
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Evidence-enabled verification for the Linux kernel
Ahmed Yousef Tamrawi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tamrawi, Ahmed Yousef, "Evidence-enabled verification for the Linux kernel" (2016). Graduate Theses and Dissertations. 15819.
https://lib.dr.iastate.edu/etd/15819

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15819?utm_source=lib.dr.iastate.edu%2Fetd%2F15819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Evidence-enabled verification for the Linux kernel

by

Ahmed Yousef Tamrawi

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Suraj C. Kothari, Major Professor

Srikanta Tirthapura

Manimaran Govindarasu

Yong Guan

Robyn R. Lutz

Iowa State University

Ames, Iowa

2016

Copyright c© Ahmed Yousef Tamrawi, 2016. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents, sisters, wife, son Yusuf, and to my

daughter Nawwar without whose support I would not have been able to complete this work. I

would also like to thank my friends and family for their loving guidance during the writing of

this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . x

ABSTRACT . xi

CHAPTER 1. OVERVIEW . 1

1.1 State-Of-The-Art Formal Verification Techniques 1

1.2 A Different Approach to Software Verification 2

1.3 Thesis Contribution . 4

1.4 Thesis Organization . 4

CHAPTER 2. MAJOR CHALLENGES AND MOTIVATION 6

2.1 Challenges Overview . 6

2.2 Path Explosion . 7

2.3 Inter-procedural Analysis . 8

2.4 Feasibility Analysis . 8

2.5 Pointer Analysis . 9

2.6 A Concrete Example to Illustrate the Need for Verification-Critical Evidence . 10

CHAPTER 3. LITERATURE REVIEW . 13

3.1 Data Races and Deadlocks Detection . 13

3.2 Static Memory Leak Detection . 15

3.3 Evidence-Enabled Verification . 16

3.4 Linux Kernel Verification . 17

www.manaraa.com

iv

CHAPTER 4. VISUAL MODELS AS VERIFICATION-CRITICAL EVI-

DENCE . 19

4.1 Matching Pair Graph (MPG) . 20

4.2 Memory Taint Graph (MTG) . 21

4.3 Points-To Graph (PtG) . 22

4.4 Event Flow Graph (EFG) . 24

4.5 Enabling Technology & Interactive Reasoning 24

CHAPTER 5. EVENT FLOW GRAPH FOR PROGRAM COMPREHEN-

SION . 27

5.1 Introduction . 27

5.2 Motivation . 29

5.2.1 A Linux Example . 29

5.2.2 Loop Call Graph . 31

5.3 Application: Verify Pairing . 32

5.3.1 Correct Lock-Unlock Pairing . 33

5.3.2 Lock-Unlock Pairing Bug . 34

5.3.3 Pairing Includes Loop . 34

5.3.4 An EFG Quirk . 35

5.3.5 Comprehension-Driven Verification . 36

5.4 Application: Find Vulnerability . 37

5.5 EFG Tool Support . 40

5.5.1 Programmed EFG Construction . 41

5.5.2 Interactive EFG Construction . 42

5.5.3 Gradual EFG Expansion . 43

5.6 Event Flow Graph . 44

5.6.1 Step 1: Marking Event Nodes . 44

5.6.2 Step 2: T-Irreducible Graph . 44

5.6.3 Step 3: Non-Event Condensation Graph 45

5.6.4 Step 4: Event Condensation Graph . 46

www.manaraa.com

v

5.6.5 Step 5: Condensed EFG . 46

5.6.6 Step 6: Final EFG . 46

5.6.7 Algorithm Complexity . 46

5.6.8 Observations . 46

5.6.9 EFG Minimality . 48

5.7 An Assessment of EFGs . 50

5.7.1 An Empirical Study . 50

5.7.2 Quantitative Assessment of EFGs . 51

5.8 Related Work . 53

5.9 Conclusion . 53

CHAPTER 6. L-SAP: EVIDENCE-ENABLED LINUX VERIFICATION

FOR LOCK/UNLOCK PAIRING ANALYSIS 55

6.1 Introduction . 55

6.2 L-SAP Approach . 58

6.2.1 Step 1: Lock/Unlock Mapping . 60

6.2.2 Step 2: Matching Pair Graph . 60

6.2.3 Step 3: Event Flow Graph . 61

6.2.4 Step 4: Pairing Algorithm . 62

6.2.5 Step 5: Feasibility Check for Potential-Error Paths 65

6.3 Evidence-Enabled Verification Using L-SAP . 67

6.3.1 Automated Verification . 67

6.3.2 Interactive Verification . 69

6.3.3 Visual Models for Evidence . 69

6.3.4 Team Verification . 71

6.4 Empirical Evaluation & Results . 72

6.4.1 L-SAP: The Lock/Unlock Pairing Analysis Tool 72

6.4.2 Case Studies & Qualitative Assessment of Visual Models 75

6.4.3 Current Limitations of L-SAP . 79

6.5 Conclusions . 80

www.manaraa.com

vi

CHAPTER 7. M-SAP: EVIDENCE-ENABLED LINUX VERIFICATION

FOR ALLOCATION/DEALLOCATION PAIRING ANALYSIS 82

7.1 Introduction . 82

7.2 M-SAP Approach . 85

7.2.1 Step 1: Allocation/Deallocation Mapping 87

7.2.2 Step 2: Event Flow Graph . 95

7.2.3 Step 3: Allocation/Deallocation Pairing 95

7.2.4 Step 4: Feasibility Check for Potential-Error Paths 99

7.3 Enabling Evidence for Human-Machine Collaboration 100

7.3.1 Creating Verification Instances . 100

7.3.2 Instance Verification Kit (IVK) . 101

7.4 Empirical Evaluation & Results . 101

7.4.1 Implementation and Experimental Setup 101

7.4.2 M-SAP: Experimental Results . 102

7.4.3 Case Studies & Qualitative Assessment of Visual Models 103

7.4.4 Current Limitations of M-SAP . 107

7.4.5 Off Limits Allocation Instances . 109

7.5 Conclusions . 109

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 111

BIBLIOGRAPHY . 113

www.manaraa.com

vii

LIST OF TABLES

Table 5.1 mutex/spin Locks/Unlocks . 51

Table 5.2 Linux kernel CFG and EFG stats . 52

Table 5.3 A comparison of CFG vs. EFG . 52

Table 6.1 Lock/Unlock function calls for mutex/spin synchronization mechanisms

in Linux kernel . 58

Table 6.2 Linux Kernel Artifacts . 73

Table 6.3 Comparison of L-SAP and LDV . 74

Table 6.4 Breakdown of instances in C3 category across different limitation facrtos 80

Table 7.1 Linux Kernel (v 3.17-rc1) Artifacts . 102

Table 7.2 Allocation/deallocation pairing results on Linux kernel version (3.17-rc1) 103

www.manaraa.com

viii

LIST OF FIGURES

Figure 2.1 An example to illustrate the need for evidence to reason about the pos-

sibility of a memory leak in the function dswrite 10

Figure 4.1 MPG evidence for the allocated memory in dswrite 20

Figure 4.2 MTG evidence for the allocated memory in dswrite 22

Figure 4.3 PtG evidence for the allocated memory in dswrite at line 4 of function

dskenq . 23

Figure 4.4 Call graph smart view for selected function dswrite 26

Figure 5.1 CFG and EFG for the function hwrng attr current store 30

Figure 5.2 Loop Call Graph for TimSort Algorithm 32

Figure 5.3 CFG with marked loop headers . 33

Figure 5.4 Loop-based EFG . 33

Figure 5.5 An example of correct pairing . 34

Figure 5.6 A bug discovery using EFGs . 35

Figure 5.7 EFG points to a missing lock preceding a loop 36

Figure 5.8 An EFG Quirk . 37

Figure 5.9 Taint flows from the secret and the user-controlled input 39

Figure 5.10 EFG with respect to Thread.sleep(25) 41

Figure 5.11 EFG with respect to Thread.sleep(25) and data flow events 42

Figure 5.12 Gradual EFG Expansion Interface . 43

Figure 5.13 T-irreducible graph transformations: (a)T1, (b)T2, (c)T3 45

Figure 5.14 CFG to EFG Transformation Illustration 47

Figure 5.15 An example of irrelevant branch node c 48

www.manaraa.com

ix

Figure 6.1 An Overview of L-SAP Pairing Analysis 59

Figure 6.2 Compact function summaries for caller (f) and callee (g) 63

Figure 6.3 The L-SAP tool and the automated verification of the selected lock in

function hso free serial device . 68

Figure 6.4 Visual models for drxk gate crtl hint to presence of calls via function

pointers . 71

Figure 6.5 Website hierarchy . 72

Figure 6.6 Visual models for an automatically verified instance 76

Figure 6.7 A bug discovery using visual models 77

Figure 6.8 Visual models for drxk gate crtl pointing to presence of calls via function

pointers . 78

Figure 6.9 The augmented MPG for drxk gate crtl after resolving calls via function

pointers . 79

Figure 6.10 The EFG for function ucma lock files shows incorrect automatic verifi-

cation . 81

Figure 7.1 An Overview of M-SAP Pairing Analysis 86

Figure 7.2 Modifying the PtG with respect to the called function formal parameter

names . 93

Figure 7.3 Compact function summaries for caller (f) and callee (g) 96

Figure 7.4 Visual models for an automatically verified instance 104

Figure 7.5 A bug discovery using visual models 106

Figure 7.6 A bug discovery using visual models 107

Figure 7.7 An Example from C3 category . 108

www.manaraa.com

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Suraj Kothari for his guidance, patience, inspirational thoughts, and support throughout this

research and the writing of this thesis. His insights and words of encouragement have often

inspired me and renewed my hopes for completing my graduate education. I would also like to

thank Jeremiäs Sauceda, Jon Mathews, and Nikhil Ranade from EnSoft for their guidance and

help throughout my graduate study. I would additionally like to thank my committee members

for their efforts and contributions to this work: Dr. Srikanta Tirthapura, Dr. Manimaran

Govindarasu, Dr. Yong Guan, and Dr. Robyn R. Lutz.

www.manaraa.com

xi

ABSTRACT

Formal verification of large software has been an elusive target, riddled with problems of

low accuracy and high computational complexity [22, 26, 82, 95]. With growing dependence on

software in embedded and cyber-physical systems where vulnerabilities and malware can lead

to disasters, an efficient and accurate verification has become a crucial need. The verification

should be rigorous, computationally efficient, and automated enough to keep the human effort

within reasonable limits, but it does not have to be completely automated. The automation

should actually enable and simplify human cross-checking which is especially important when

the stakes are high. Unfortunately, formal verification methods work mostly as automated

black boxes with very little support for cross-checking.

This thesis is about a different way to approach the software verification problem. It is about

creating a powerful fusion of automation and human intelligence by incorporating algorithmic

innovations to address the major challenges to advance the state of the art for accurate and

scalable software verification where complete automation has remained intractable. The key

is a mathematically rigorous notion of verification-critical evidence that the machine abstracts

from software to empower human to reason with. The algorithmic innovation is to discover

the patterns the developers have applied to manage complexity and leverage them. A pattern-

based verification is crucial because the problem is intractable otherwise. We call the overall

approach Evidence-Enabled Verification (EEV).

This thesis presents the EEV with two challenging applications: (1) EEV for Lock/Un-

lock Pairing to verify the correct pairing of mutex lock and spin lock with their corresponding

unlocks on all feasible execution paths, and (2) EEV for Allocation/Deallocation Pairing

to verify the correct pairing of memory allocation with its corresponding deallocations on

all feasible execution paths. We applied the EEV approach to verify recent versions of the

Linux kernel. The results include a comparison with the state-of-the-art Linux Driver Verifi-

www.manaraa.com

xii

cation (LDV) tool, effectiveness of the proposed visual models as verification-critical evidence,

representative examples of verification, the discovered bugs, and limitations of the proposed

approach.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

With growing dependence on software in embedded and cyber-physical systems where vul-

nerabilities and malware can lead to disasters, efficient and accurate verification has become

a crucial need for safety and cybersecurity. The challenges of verifying our software infras-

tructure are daunting, in part because of the complexity of the software, but also due to the

sheer volume of it. The Linux kernel alone, which provides the basis for so many devices (web

servers, routers, smart phones, desktops), is over 12 MLOC.

1.1 State-Of-The-Art Formal Verification Techniques

Formal verification has been the holy grail of software engineering research [44]. Automated

software verification methods have led to advances in data and control flow analyses, and appli-

cations of techniques such as Binary Decision Diagrams (BDDs) to analyze large software [58].

However, there are two fundamental limitations: (A) a completely automated and accurate

analysis encounters NP hard problems [32, 79, 87], and (B) formal verification methods work

mostly as automated black boxes with little support for cross-checking [1,2,5,39,41,83,89,98].

The current formal verification approaches are not geared to produce evidence to empower

and integrate human reasoning into the verification process. Consider the Matching Pair Ver-

ification (MPV) problem: it involves verifying the correct pairing of two events on all feasible

execution paths. Specific examples of such events can be: allocation and deallocation of memory,

locking and unlocking of mutex, or sensitive source and malicious sink of sensitive information

in the context of cybersecurity. MPV is broadly applicable to problems of software safety and

cybersecurity. State-of-the-art research and commercial tools for MPV produce either very

little evidence, voluminous evidence, or evidence that refers to the intermediate representation

www.manaraa.com

2

for the verification machinery but not to the source code. Such evidence is hard to decipher; it

does not simplify cross-checking.

1.2 A Different Approach to Software Verification

This thesis is about a different approach to software verification. It is about targeting au-

tomation to amplify human intelligence and solve a hard problem by integrating automation

with human reasoning. The verification should be automated wherever possible, and comple-

mented by human reasoning wherever needed. The key is a mathematically rigorous notion of

verification-critical evidence that the machine abstracts from software to empower human to:

(a) cross-check an automatically verified instance, and (b) complete the verification where au-

tomation falls short. The goal is to create a powerful fusion of automated evidence abstraction,

evidence-based reasoning, and pattern-based automated verification. The machine and human

have different strengths and weaknesses to complement each other. Even for automatically

completed verification, we advocate human cross-checking. This is especially important for

critical systems where failures of software can be catastrophic. The cross-checking should be

simplified by automation to conserve human effort.

We propose an Evidence-Enabled Verification (EEV) approach for the MPV problem. EEV

conserves human effort and empowers reasoning by facilitating it with machine-produced ev-

idence which not only makes automation computationally efficient but also simplifies human

reasoning. The automation part of the EEV approach partitions the problem into verification

instances, produces the verification-critical evidence for each instance, and wherever possible

performs the verification automatically. When the automatic verification falls short, the evi-

dence provides significant help to the analyst to understand the complications surrounding the

particular instance so that the analyst can decide what additional evidence to gather and what

reasoning to apply to complete the verification. With a better understanding, it is sometimes

possible to define a pattern to encapsulate a barrier and advance the automation so that it can

address the particular barrier.

This thesis presents two EEV tools for the Linux kernel: (1) L-SAP: an EEV tool for

Lock/Unlock Pairing (Chapter 6) to verify the correct pairing of mutex lock and spin lock

www.manaraa.com

3

with their corresponding unlocks on all feasible execution paths, and (2)M-SAP: an EEV tool

for Allocation/Deallocation Pairing (Chapter 7) to verify the correct pairing of memory

allocation with its corresponding deallocations on all feasible execution paths. The tools pro-

duce three categories of results: (C1) automatically verified instances with correct pairings,

(C2) automatically verified instances with violations, i.e. a feasible path with a lock/allocation

not followed by unlock/deallocation, and (C3) instances where the automated verification is

inconclusive.

L-SAP produces for each verification instance the following verification-critical evidence:

the Matching Pair Graph (MPG) (Section 4.1) to assist with the inter-procedural reasoning

by identifying relevant functions and their interactions, and the Event Flow Graph (EFG)

(Chapter 5) to assist with intra-procedural reasoning for each relevant function. Similarly,

M-SAP produces for each verification instance the following evidence: the Memory Taint

Graph (MTG) (Section 4.2) to assist with the inter-procedural reasoning by identifying relevant

functions and their interactions, the Event Flow Graph (EFG) (Chapter 5) to assist with intra-

procedural reasoning for each relevant function, and the Points-To Graph (PtG) (Section 4.3)

to assist with data flow reasoning by identifying the points-to relations between the pointers

of interest at different locations in source code. In addition, we have developed smart views to

enable interactive reasoning where the analyst can interact visually and programmatically to

augment or refine the produced evidence.

We applied the L-SAP tool to verify three recent versions of the Linux operating system (i.e.,

3.17-rc1, 3.18-rc1, and 3.19-rc1) with altogether 37 MLOC and 66, 609 verification instances.

We applied the M-SAP tool to verify version (3.17-rc1) of the Linux operating system with

12 MLOC and 2, 963 verification instances. We developed our EEV tools using Atlas [3, 37],

a graph database platform for program analysis and comprehension. The query language and

the interactive visualization capabilities of Atlas are crucial to build and apply visual models

for software verification.

The results (Sections 6.4 and 7.4) include a comparison with the state-of-the-art Linux

Driver Verification (LDV) tool [5], effectiveness of the proposed visual models (MPG, MTG,

PtG, and EFG) as verification-critical evidence through representative examples of the three

www.manaraa.com

4

result categories produced by L-SAP and M-SAP, the discovered bugs, and a website [6] for

public cross-checking of verification results with evidence for all the verification instances.

1.3 Thesis Contribution

The key contributions are:

1. A rigorous notion of verification-critical evidence using visual models. The evidence

enables human-machine collaboration to achieve high efficiency and accuracy without

exorbitant manual effort (Chapter 4).

2. A novel linear time control flow graph pruning algorithm to compute a compact derivative

of control flow graph (CFG) called Event Flow Graph (EFG) (Chapter 5).

3. A scalable and accurate evidence-enabled verification approach for lock/unlock pairing

and its implementation in L-SAP tool (Chapter 6).

4. A scalable and accurate evidence-enabled verification approach for allocation/deallocation

pairing and its implementation in M-SAP tool (Chapter 7).

5. A comprehensive empirical study and evaluation on recent versions of the Linux kernel to

showcase the scalability and accuracy of the evidence-enabled verification tools: L-SAP

(Section 6.4) and M-SAP (Section 7.4).

1.4 Thesis Organization

The remainder of the thesis is organized as follows. We first present the motivation and

major challenges of static software verification in Chapter 2. Next, Chapter 3 describes the

related work on static verification techniques for lock/unlock pairing and allocation/dealloca-

tion pairing. Chapter 4 presents software visual models as verification-critical evidence used

in lock/unlock pairing and allocation/deallocation pairing. Chapter 5 describes in details the

Event Flow Graph (EFG) and the linear time algorithm for deriving the EFG from its corre-

sponding CFG. Chapters 6 and 7 present the automated verification algorithms used in L-SAP

tool for lock/unlock pairing and M-SAP tool for allocation/deallocation pairing, respectively.

www.manaraa.com

5

Chapters 6 and 7 also present the empirical assessment of L-SAP and M-SAP, the produced

evidence, and the discovered bugs. Chapter 8 concludes with an overall summary of the benefits

of the EEV approach and a discussion of the extensibility of the EEV approach.

www.manaraa.com

6

CHAPTER 2. MAJOR CHALLENGES AND MOTIVATION

In this chapter, we discuss the major challenges for lock/unlock pairing and allocation/deal-

location pairing analyses that motivated the design of our evidence-enabled verification ap-

proaches.

2.1 Challenges Overview

Synchronization problems and memory leaks can be catastrophic - a business-transaction

server can crash resulting in a big financial loss, or a safety-critical control system can halt

causing loss of lives. With multi-threading and event-driven processing, it is challenging to

ensure resilience of software systems to such problems. These problems can elude dynamic

analyses and regression testing because their occurrence often depends on intricate sequences

of low-probability events [41]. Performing multiple runs of a program to examine all possible

behaviors is prohibitively expensive and time-consuming. Thus, automated static analyses are

crucial to complement testing and dynamic analyses.

Consider the allocation/deallocation pairing analysis: an allocation event A is paired with

a deallocation event D iff D can deallocate the memory block allocated by A. The existence

of unpaired allocations on feasible execution paths results in memory leaks. The lock/unlock

pairing analysis is similar where the lock event L is paired with an unlock event U iff U can

release the lock acquired by L. The existence of unpaired locks on feasible execution paths

results in synchronization problems. This pairing of an allocation (lock) with its corresponding

deallocations (unlock) on all feasible execution paths requires the following: (a) a data flow

analysis to map each allocation (lock) to corresponding deallocations (unlocks), (b) a control

flow analysis to pair each allocation (lock) with corresponding deallocations (unlocks), and

www.manaraa.com

7

(c) a feasibility analysis to check the feasibility of an execution path on which an allocation

(lock) is not ensued by a deallocation (unlock). A general-purpose, completely automated, and

accurate analysis is intractable for each of the above three requirements.

The current formal verification approaches are not geared to produce evidence to empower

and integrate human reasoning into the verification process. State-of-the-art research and

commercial tools for MPV problems produce either very little evidence, voluminous evidence,

or evidence that refers to the intermediate representation for the verification machinery but

not to the source code. Such evidence is hard to decipher; it does not simplify cross-checking.

Thus, another challenge is to formulate the evidence and build tools that can produce evidence.

2.2 Path Explosion

A Control Flow Graph (CFG) [14] is a graph representing all paths that the program

may traverse during its execution. CFGs are central to any static analysis of the flow of

execution and data-relationships in a computer program. The number of control flow paths

grows exponentially with non-nested branch nodes. Our empirical study of the Linux kernel

shows many functions with very large number of execution paths. For example, function

register cdrom1 has 20 non-nested branch nodes. This path explosion increases with inter-

procedural analysis as a path from the caller function splits into multiple paths in the called

function.

To address the path-explosion challenge, this thesis presents a novel CFG pruning technique

that produces a compact derivative of CFG called Event Flow Graph (EFG) (Chapter 5). This

is achieved by introducing an equivalence relation on the CFG paths to partition/group them

into equivalence classes. It is then sufficient to perform the verification or pairing analysis on

these equivalence classes (i.e., paths in EFG) rather than on the individual paths in a CFG. We

have adopted the graph algorithm by Tarjan et al. [86] to come up with a graph compaction

algorithm to form the equivalence classes efficiently. Although the number of paths in a CFG

is very large, the number of path equivalence classes is quite small, as seen from our results of

the Linux kernel, and that enables an efficient and accurate path-sensitive analysis.

1http://lxr.free-electrons.com/source/drivers/cdrom/cdrom.c?v=3.19#L586

http://lxr.free-electrons.com/source/drivers/cdrom/cdrom.c?v=3.19#L586

www.manaraa.com

8

2.3 Inter-procedural Analysis

In several lock/allocation instances in the Linux kernel, the corresponding unlocks/deallo-

cations occur across multiple functions, thus requiring inter-procedural analysis. The pairing

algorithm must handle the following cases: (1) the locking/allocation function A calls the un-

locking/deallocation function D through a call sequence, (2) the locking/allocation function A

is called by the unlocking/deallocation function D through a call sequence (the reference to

the lock object (allocated memory block) is returned upward the reverse call sequence from A

to D), (3) A and D are called by a common parent, or (4) A and D are called asynchronously

sharing the lock object (allocated memory block) as a heap object. A combination of these

cases can happen where one instance of locking/allocation in A is paired with multiple unlock-

ing/deallocation instances in several multiple functions D1, D2, ..., Dk on different paths. The

pairing algorithm (Chapters 6 and 7) addresses the inter-procedural analysis challenge by gen-

erating compact function summaries to enable efficient inter-procedural and context-sensitive

analysis.

2.4 Feasibility Analysis

A path on which a lock (allocation) is not paired with an unlock (deallocation) may or may

not be an error depending on whether the path is feasible or not. Thus, analyzing feasibility

of paths is important to avoid false positives. Analyzing path feasibility can incur exponential

computation [23, 39, 64, 67, 88] because it involves checking satisfiability of branch conditions

governing a path. Typical complications for path feasibility analysis are correlations between

branch conditions, loops, and inter-procedural paths.

To address the feasibility analysis challenge, first, our pairing algorithm (Chapters 6 and 7)

minimizes the need for performing feasibility analysis by sequencing the analysis steps to pro-

duce at the end, exactly those path equivalence classes on which a lock (allocation) is not paired

with an unlock (deallocation). The feasibility analysis is required only for these cases to avoid

false positives. Second, the EFG (Chapter 5) optimizes the path feasibility analysis by identi-

fying a small necessary set of branch conditions relevant for path feasibility. Third, the analysis

www.manaraa.com

9

calculates Boolean expressions that express the conditions under which each lock (allocation)

is not paired with unlock (deallocation). Finally, our pairing analysis uses BDDs [92] to check

the satisfiability of these expressions to determine whether the paths that contain the unpaired

locks (allocations) are infeasible. We perform a simple automated check for path feasibility by

applying an intra-procedural textual equality based analysis. The cases that are not amenable

to the simple check are reported as inconclusive so that the human analyst can examine them

further.

2.5 Pointer Analysis

Despite the advances in pointer analysis algorithms, they cannot be completely accurate

because of the fundamental limitation. Typical accuracy hurdles for pointer analysis are pointer

arithmetic operations on pointers, heap objects, function pointers, aggregate structures, offset-

references, complex pointer references. For example, a highly accurate bit representation to

track a pointer loses accuracy when a pointer is passed to a linked list. Further complications

are library and system calls. Godefroid and Lahiri [46] from Microsoft Research note “Indeed,

in practice, symbolic execution of large complex programs is rarely fully precise due to external

library or system calls, un-handled program instructions, pointer arithmetic, floating-point

computations, etc.”

To provide scalable and sound analyses and conservatively mitigate inaccuracies of pointer

analyses, the lock/unlock pairing analysis (Chapter 6) uses type-based analysis (Section 6.2.1).

Our evaluation on multiple versions of the Linux kernel shows that only a tiny percentage (0.2%)

of the lock instances cannot be paired using our type-based analysis. To achieve accuracy and

scalability of the type-based analysis, the lock/unlock pairing analysis leverages an innovative

algorithm [47]) (Section 4.1) to compute the minimum set of functions for the above four

variants of inter-procedural analysis.

For allocation/deallocation pairing analysis, our goal is not to advance state-of-the-art

pointer analysis, but rather to provide a working analysis that supports our verification-critical

evidence framework. Our pairing analysis (Chapter 7) uses a conservative pointer analysis

(Section 7.2.1) that is limited to handling cases and implementation patterns found in the

www.manaraa.com

10

Linux kernel such as the cases where the allocated memory blocks do not escape through

function pointers or heap objects.

2.6 A Concrete Example to Illustrate the Need for Verification-Critical

Evidence

The current formal verification approaches [1,2,5,39,41,83,89,98] are not geared to produce

evidence to empower and integrate human reasoning into the verification process. They work

mostly as automated black boxes with very little support for cross-checking. The following

example brings out the need for verification-critical evidence to reason about and solve complex

software verification problems. The example in Figure 2.1 is from the XINU [12] operating

system. XINU is a small system with about five thousand lines of code and 200 functions.

However, XINU is complex enough to bring out key verification challenges. This example

involves pairing an allocation with corresponding deallocations. In XINU, getbuf and freebuf

are respectively the allocation and the deallocation functions.

Figure 2.1 An example to illustrate the need for evidence to reason about the possibility of a

memory leak in the function dswrite

Consider the following verification instance: function dswrite (Figure 2.1(a)) calls getbuf but

it does not call freebuf. The verification problem is to match the getbuf function call in dswrite

with its corresponding freebuf function call(s). As seen from the dswrite code in Figure 2.1(a),

dswrite calls and passes the pointer drptr to the allocated memory to function dskenq. As shown

in Figure 2.1(b), function dskenq has four paths with different exits from the function.

www.manaraa.com

11

To the best of our knowledge, all the existing static analysis would either fail or report a

memory leak for this example. Moreover, these tools produce very little evidence or voluminous

evidence which is hard to decipher. With only one exception [83], the evidence refers to the

intermediate representation for the verification machinery but not to the source code. Let

us improvise and consider a hypothetical tool that produces the following evidence: (1) a call

graph of function dswrite (Figure 2.1(c)), (2) markings for the relevant source code line numbers

(Figure 2.1(b)) in function (dskenq) where the tool detects the leak.

Let us now understand the difficulties the analyst would face even with this improvised

evidence. We will discuss the difficulties along each of the four paths as shown in function

dskenq (Figure 2.1(b)).

1. Path 1: drptr is passed to function dskstrt; it does not deallocate the allocated memory.

But, the analyst cannot conclude that it is a memory leak because on the same path drptr

is assigned to dsptr->dreqlst where dsptr (passed as a parameter to dskenq from dswrite).

The analyst would then need to go back to dswrite and figure out that dsptr points to a

global data structure. The verification becomes very challenging for the analyst once the

pointer is globally accessible. Any function could accesses the pointer to deallocate the

memory. The call graph (Figure 2.1(c)) does not help at this point. Without any more

evidence, the analyst faces the arduous task of sifting through all functions to complete

the verification.

2. Path 2: The pointer to the allocated memory drptr is passed to function dskopt. This

tells the analyst that there is a problem in dskopt. The corresponding code to dskopt is

not shown but we point out that it has 7 paths including paths on which the pointer to

the allocated memory drptr is assigned to a global structure. Thus, the analyst has a lot

more work to do to complete the verification. However, there is no additional evidence

to help the analyst with the remaining work.

3. Paths 3 and 4: The analyst faces similar challenge as in Path 1 because the pointer

to the allocated memory drptr is assigned to a global structure. The analyst also has to

manually trace the data flow through dskenq to figure it out.

www.manaraa.com

12

Summary. This example exhibits multiple challenges due to global accessibility of the

pointer to the allocated memory. It poses a monumental task for the analyst to complete the

verification.

This is also an example of an interesting pattern that should be leveraged for a tractable

verification. On several execution paths in dskenq, there is a consistent pattern of the allocated

memory pointer drptr being assigned to a global structure. Moreover, it is the same global

structure on all paths. It looks like that the developer has done so on purpose with a design in

mind. The design is not documented and the improvised evidence does not provide a clue. The

call graph evidence in Figure 2.1(c) is problematic because: (1) there are functions irrelevant

to the verification called by getbuf and freebuf, and (2) there are functions relevant to the

verification but not captured. If the analyst does not figure out that the allocated memory

pointer on some paths in dskenq becomes globally accessible, the analyst could conclude that it

is a memory leak which is incorrect.

To address these difficulties, the evidence must simplify human reasoning: (1) by identifying

relevant functions and their interactions, (2) by assisting with intra-procedural reasoning for

each relevant function, and (3) by assisting with data flow reasoning by identifying the points-to

relations between the pointers of interest at different locations in source code. In Chapter 4, we

revisit the motivation example and present multiple visual models as inter-procedural, intra-

procedural, and data flow evidence to help the analyst reason, complete, and cross-check the

verification instance.

www.manaraa.com

13

CHAPTER 3. LITERATURE REVIEW

In this chapter, we first survey previous static verification approaches for lock/unlock and

allocation/deallocation pairing analyses and reflect on the shortcoming of their results, scala-

bility, and accuracy, then we discuss their produced evidence. Next, we present previous work

on Linux kernel verification.

3.1 Data Races and Deadlocks Detection

Detecting data races and deadlocks is a well-known challenging problem [41]. Although not

directly related, there are many papers on dynamic verification techniques to detect race con-

ditions and deadlocks [27,31,40,49,50,61,62,71,75,80,96]. However, Performing multiple runs

of a program to examine all possible behaviors is prohibitively expensive and time-consuming.

Thus, automated static verification techniques are crucial to complement testing and dynamic

verification techniques.

Warlock [81], Extended Static Checking [38] (ESC) and ESC/Java [57] are static race de-

tection approaches for C, Modula-3 and Java respectively. These approaches utilize a theorem

prover to find race conditions. However, these approaches require annotations to inject knowl-

edge into the analysis and to reduce the number of false positives. Thus, applying these ap-

proaches to large code bases such as the Linux kernel would require time-consuming and tedious

annotation effort and at the end annotations can be erroneous and checking their correctness

would be a daunting task for millions of lines of complex code.

RacerX [41] and Relay [89] are static lockset based analyses for C code that scale to large real

world programs including the Linux kernel. RacerX [41] uses a top-down approach to compute

absolute locksets (the set of locks held by the program) at each program point. RacerX is able

to run on an older version of the Linux kernel (v2.5.62 - 1.8 MLOC) in tens of minutes. In

www.manaraa.com

14

contrast, Relay [89] uses a bottom-up approach to compute relative locksets, which describes

the changes in the locks being held relative to the function entry point, at each program point.

Relay was able to analyze an older version of the Linux kernel (v 2.6.15 - 4.5 MLOC) in 72

hours. RacerX reports that in order to scale, the analysis discards valuable information, such

as truncating the function summaries. Consequently, discarding possible races. Moreover,

both approaches (RacerX and Relay) require significant post-processing of large volume of

warnings/false positives.

Saturn [39] is considered a scalable static analysis engine that is both sound and complete

with respect to the user-provided analysis script (abstraction), written in its Calypso language.

ESP [36] is a path-sensitive analysis tool that scales to large programs by merging superfluous

branches leading to the same analysis state. However, the lock analysis script bundled with

Saturn and ESP is neither sound nor complete, most notably because of its lack of global alias

analysis and incomplete function summaries for inter-procedural analyses.

Locksmith [73,74] is a sound static race detector for C. It uses a constraint based technique

to infer the correlation of memory locations to the locks that protect them. If a shared location

is not consistently protected by the same lock, a race is reported. Locksmith analyzes source

code fast. However, it finds superficial errors and it produces a number of false alarms, which

is about 90% on the device drivers of an older version of the Linux kernel and about 98% on

some POSIX applications.

Cho et al. [29] proposed a lock/unlock pairing analysis that combines an inter-procedural

analysis and dynamic checking for better detection of races and deadlocks. Their analysis

uses dynamic checking to compensate for imperfections in their static analysis. However, the

proposed dynamic analysis introduces an overhead for the overall analysis. Moreover, the

lock/unlock pairing mechanism has been only applied to code orders of magnitude smaller

than the Linux kernel.

The Linux Driver Verification tool (LDV) [5] is currently the top-rated tool in the software

verification competition (SV-COMP) [18–20] in the Linux device drivers verification category.

LDV uses Blast [21] model checker to check for memory leaks and synchronization problems.

However, LDV takes 60 hours for lock/unlock pairing in a recent version of the Linux kernel.

www.manaraa.com

15

3.2 Static Memory Leak Detection

Memory leak detection is a well-known challenging problem. Although not directly related,

there are number of reported attempts on memory leak detection using dynamic analysis [24,33,

66,69,100,101]. There has been a lot of research devoted to checking memory leaks statically [1,

5, 52,55,83,97].

Saturn [97] models the memory-leak detection problem as a boolean satisfiability problem,

then uses a SAT solver to identify memory-leaks. Its analysis is context-sensitive and intra-

procedurally path-sensitive. Saturn checks for specific type of memory leaks: a memory block

that is allocated in function p and is never escaped and deallocated in p is considered a memory

leak. Thus, Saturn handles a very small subset of the allocations in the Linux kernel. Saturn

is able to run on an older version of the Linux kernel (v2.6.10 - 5MLOC) in 23 hours without

parallelization.

FastCheck [28] uses guarded value-flow analysis to detect memory leaks. It tracks the flow

of values through top-level pointers only. It is fast but limited to analyzing allocation sites

whose values escapes to (flow into) top-level pointers only. Through our study in the Linux

kernel, most of the memory leak cases reported in this thesis will go undetected with FastCheck.

Athena [55] finds inter-procedural path-sensitive faults (including memory leaks) guided by

user specifications. Sparrow [52] is a static analyzer that relies on abstract interpretation to

detect memory leaks in C programs. It separately analyzes each function’s memory behavior

into a parameterized summary that is used in analyzing its call-sites. Both approaches (Athena

and Sparrow) have been applied to programs order of magnitude smaller than the Linux kernel

and it is not clear how scalable these tools are to larger code bases.

Clang [1] finds memory leaks in C and Objective-C programs based on symbolic execution.

Being intra-procedural, it assumes unknown or symbolic values for the formal parameters of a

function and the returned values from its call-sites. Therefore, all inter-procedural leaks can

go undetected. Clang does not scale-well to large code bases. Moreover, LLVM [7], its core

compiler, does not succeed in compiling the recent versions of the Linux kernel.

www.manaraa.com

16

Saber [83] is a static detector for memory leaks in C programs. It performs a sparse value-

flow analysis to track flow of values (escapes), from allocation to deallocation sites, through

top-level and address-taken pointers. Saber does not track escapes (values-flows) to global vari-

ables. Although, Saber is the most recent memory leak detector, it cannot be applied to large

code bases as the Linux kernel due to the following challenges: (1) Saber uses Open64 [8] com-

piler which cannot link the whole program static single assignment intermediate representation

of the Linux kernel in its inter-procedural optimization module due to some non-trivial com-

pilation issues (e.g., assembly language mixed with C), and (2) Saber uses Andersen’s pointer

analysis [15] for building value-flow dependencies. Although Andersen’s analysis is well-studied

algorithm, it is hard to scale to whole pointer analysis of large code bases as the Linux kernel

(12 MLOC). Some heuristics may be applied to speed up and scale Saber’s pointer analysis

by performing field-insensitive analysis or mixing with unification-based [35] analysis, however,

this will drastically affect the detection accuracy.

The Linux Driver Verification tool (LDV) [5] is also used to check for memory leaks. How-

ever, LDV takes 30 hours for allocation/deallocation pairing in a recent version of the Linux

kernel.

3.3 Evidence-Enabled Verification

Saturn [39, 98] provides a minimalist evidence that consists of the source correspondence

(i.e., file path and line numbers) for the checked instances. For example, if a memory leak

is detected, Saturn will point-out the source correspondence for the allocation site only. This

would require a huge effort of cross-verification, especially, if the corresponding deallocation

calls for the allocated memory occur many levels down the call chain from the allocation

function.

RacerX [41] and Relay [89] require significant post-processing of large volume of proofs/re-

ports to produce comprehensible evidence for manual validation.

The Linux Driver Verification tool (LDV) [5] produces a monumental amount of non-visual

complex evidence that require significant processing to produce the source correspondence of

where the problem occurs.

www.manaraa.com

17

Clang [1] finds memory leaks in C and for each detected memory leak, Clang generates an

evidence that consists of multiple HTML pages. Each HTML page corresponds to the source

code of a function related to the detected memory leak. Clang also draws segments between

the different statements corresponding to the execution path where the detected memory leak

occurs. In this case, the cross-verification process is tedious and error-prone, especially with

inter-procedural memory leaks given that the analyst is limited to one function at a time.

Saber [83] produces a set of graphs , for each detected memory leak, that includes: program

assignment graph, constraint graph, and value-flow graphs. However, this evidence corresponds

to the intermediate representation of source code (i.e., static single assignment). Moreover, the

evidence is difficult to read given that it has no source correspondence to the actual source

code where the memory leak occurs.

Coverity [2] is a well-known commercial tool that offers static source code analysis tech-

nology that finds critical defects and security vulnerabilities in C/C++ and Java source code.

For detected memory leaks and synchronization problems, Coverity annotates the source code

with the events leading to the error. This produced evidence poses a usability barrier to the

analyst, especially for inter-procedural errors the occur across multiple source files.

To the best of our knowledge, we are not aware of any evidence-based verification plat-

form that is geared to produce comprehensible, compact, and visual evidence to empower and

integrate human reasoning into the verification process.

3.4 Linux Kernel Verification

Linux dominates the server operating systems market. Many embedded devices such as

smart phones run Linux as kernel. There is an increasing need for automatic verification of

Linux components.

Microsoft had identified the device drivers as the most important source of failures in

Windows. Therefore, the company has integrated the Static Driver Verifier (SDV) tool in the

Windows Driver Development Kit that uses the SLAM [17] verification engine. For Linux, an

industry-funded verification project of the size of SDV does not exist. Linux verification has

become an important research topic using program analysis, SMT solvers, model checking, and

www.manaraa.com

18

other software verification techniques [43,48,53,54,63,70,72,94]. Despite many new advances,

the recent competitions on software verification (SV-COMP) [18–20] show that state-of-the-art

tool implementations have problems analyzing Linux.

This Thesis proposes EEV as an alternative approach to software verification of MPV

problems. Our comparison results on recent versions of the Linux kernel (Sections 6.4 and 7.4)

with the top-rated Linux Driver Verification (LDV) [5] tool proves the practicality, accuracy,

and scalability of EEV.

www.manaraa.com

19

CHAPTER 4. VISUAL MODELS AS VERIFICATION-CRITICAL

EVIDENCE

The complexity of software is rooted in its own version of the butterfly effect [45, 59]. A

small change at one point can impact many parts of the software and cause an unforeseen

effect at a very distant point of the software. This impact propagation is hard to decipher

from software viewed as lines of code; it makes program comprehension and reasoning tedious,

error-prone, and almost impossible to scale to large software. In addition, the current formal

verification approaches work mostly as automated black boxes with very little support for

cross-checking [1, 2, 5, 39,41,83,89,98].

In this chapter, we propose visual software models as the key enablers for integrating au-

tomation with human intelligence to solve software verification problems where complete au-

tomation has remained intractable. The key innovation is a mathematically rigorous notion of

verification-critical evidence that the machine abstracts from software to empower human to

reason with. The machine and human have different strengths and weaknesses to complement

each other. Even for automatically completed verification, we advocate human cross-checking.

This is especially important for critical systems where failures of software can be catastrophic.

The cross-checking should be simplified by automation to conserve human effort.

Specifically, we will present four visual software models:

1. The Matching Pair Graph (MPG) (Section 4.1) and Memory Taint Graph (MTG) (Sec-

tion 4.2) for managing inter-procedural complexity due to impact propagation.

2. The Points-To Graph (PtG) (Section 4.3) to assist with data flow reasoning by identifying

the points-to relations between the pointers of interest at different source code locations.

3. The Event Flow Graph (EFG) (Section 4.4) (derived from the Control Flow Graph

(CFG)) for managing intra-procedural complexity of control paths explosion.

www.manaraa.com

20

4.1 Matching Pair Graph (MPG)

By design, the matching pair graph (MPG) [47] is a directed graph with edges representing

function calls and the roots of MPG are asynchronous functions; they either belong to different

threads or some of them may be called through interrupts. The MPG captures the functions

that are needed for verifying the correct pairing of lock/unlock and allocation/deallocation. The

functions in the MPG are sufficient for the pairing analysis if the type of the pointer referencing

the lock object or the allocated memory block is preserved and never changes (i.e., not casted

to a different type). Now, let us discuss how the MPG can serve as valuable evidence and

significantly simplify work for the analyst by revisiting the motivation example in Figure 2.1.

Figure 4.1 shows the MPG corresponding to the allocated memory in function dswrite. From

the several hundred XINU functions, the MPG has narrowed down the relevant functions to 6.

Figure 4.1 MPG evidence for the allocated memory in dswrite

Besides producing a small set of functions, the MPG provides other very valuable pieces of

evidence. The MPG shows a call chain from dswrite to freebuf which indicates the possibility

of execution paths on which the pointer to the allocated memory is passed as a parameter,

eventually to function dskopt which deallocates the memory. More importantly, the MPG

includes function dsinter which turns out to be a crucial clue. Function dsinter is not connected

to dswrite by forward or reverse call chains. Strangely, dsinter calls freebuf but not getbuf. It

is actually a critical clue.

www.manaraa.com

21

The analyst can hypothesize that freebuf in dsinter can potentially pair with the getbuf

in dswrite and since dsinter and dswrite are roots of the MPG, they work asynchronously and

communicate with each other by sharing a global data structure D. To prove the hypothesis

the analyst must locate D and complete the verification. The analyst has a good suspect for

D, namely the data structure to which the allocated memory pointer drptr is assigned. This

makes it quite easy for the analyst to complete the verification.

This example of the memory allocation instance in dswrite illustrates how the evidence

from MPG can be of tremendous assistance to the analyst. It presents a case not amenable to

automation because of the invisible control due to asynchronous processing. The data flow is

also invisible because the allocated memory pointer drptr is inserted in a global linked list D.

Function dsinter draws the pointers from the list and deallocates the memory for each pointer.

And the fact that it does so until the list becomes empty shows that it is not a memory leak.

This is not a wayward example. It stems from the well-known producer-consumer pat-

tern [85], a classic example of a multi-process synchronization. In Section 6.2.2, the MPG is

used in our lock/unlock pairing analysis.

4.2 Memory Taint Graph (MTG)

The Memory Taint Graph (MTG) is a directed graph where the nodes correspond to func-

tions and the edges are call relations. The MTG captures the set of functions where the object

of interest associated with the MPV instance has been referenced, communicated or escaped.

There are three communication ways: passing a reference through a parameter, returning a

reference to the parent via a return statement or through a parameter, or referencing it though

a global variable. Unlike the MPG, the MTG works with the MPV instances where the type of

the pointer referencing the object of interest is not preserved while communicating or escaping

the object. That means, the object is referenced by pointers of different types than the initial

type. The MTG for allocation/deallocation pairing of object o contains the set of functions

visited/analyzed while tracking references to o via pointer analysis. Nevertheless, the MTG will

not be able to capture functions that are involved in obscure flows through interrupt driven.

www.manaraa.com

22

The MTG can serve as valuable evidence and significantly simplify work for the analyst by

capturing how the object of interest has been communicated/escaped through the program.

Figure 4.2 shows the MTG corresponding to the allocated memory in function dswrite. The

analyst can easily see that the allocated memory block in dswrite has been passed as a parameter

to dskenq and then to dskqopt and finally to freebuf. In Section 7.2.1.13, we will use the concept

of MTG in our allocation/deallocation pairing analysis.

Figure 4.2 MTG evidence for the allocated memory in dswrite

4.3 Points-To Graph (PtG)

The Points-To Graph (PtG) is a directed graph where the nodes and edges are as follow:

The nodes are:

• Pointer node that represents a program pointer. In our node representation, the pointer

node can be one of the following:

– An id pointer (IDP) node denotes a directly accessed pointer with no field references.

For example, the pointers ptr and q are IDPs in the expression ptr = q.

– A field-reference pointer (FRP) denotes a pointer that is being referenced/accessed

through its containing structure using the pointer/structure de-reference operations:

→ or •. For example, the pointer a->b->c is a FRP and its containing structure is

a->b. In turn, a->b is a FRP pointer and its containing structure is a which is an

IDP.

www.manaraa.com

23

• Memory Location (MLoc) node that represents a location in memory that can be refer-

enced or pointed-to by pointer nodes. The MLoc node can also represent an Allocated

Memory Block (AMB) that corresponds to an allocated memory block via an allocation

call. The AMB node is associated with an address corresponding to the source code

location of the allocation callsite.

There are two kinds of directed edges:

• Points-to Edge: A points-to edge (a → b) from node a to node b represents that the

pointer represented by a points-to the pointer represented by b.

• Field Edge: A field edge (C 99K k) from node C to node k denotes that the pointer

represented by k is a field in the structure represented by the pointer C.

Section 7.2.1 describes the details of mining, building, and the transformation of points-

to graphs. Now, let us discuss how the PtG can serve as valuable evidence and significantly

simplify work for the analyst by revisiting the motivation example in Figure 2.1. Figure 4.3

shows the PtG after processing line 4 in function dskenq with respect to the allocated memory

block AMB at line 10 in function dswrite.

Figure 4.3 PtG evidence for the allocated memory in dswrite at line 4 of function dskenq

The PtG provides valuable pieces of evidence. The PtG shows the allocated memory block

at line 10 of dswrite represented by the AMB node. It also shows all the pointers that directly

www.manaraa.com

24

and indirectly point to that block. The analyst can check whether any of the pointers at line

4 of function dskenq points-to the AMB. For example, the analyst can see that pointers q and

dsptr->dreqlst point-to the allocated memory block and may be able to deallocate it. The

analyst can also see that dsptr can be used to deallocate the memory block through the field

dreqlst. This makes it quite easy for the analyst to complete or validate the verification. This

example illustrates how the evidence from PtG can be of tremendous assistance to the analyst.

4.4 Event Flow Graph (EFG)

The CFG is valuable for understanding program behaviors. However, in real-world software

the CFG can be very large and complex. This thesis presents a compact derivative of the CFG,

called the EFG. Mathematically, the EFG defines an equivalence relation on CFG paths, where

each path in the EFG corresponds to a multitude of CFG paths with identical traces of events

of interest. The EFG has two major advantages over CFG: (a) although the number of paths

in a CFG can be exponentially large, the essential information to be analyzed is captured by a

small number of equivalence classes, and (b) checking path feasibility becomes simpler.

In Chapter 5, we present two important applications to show the use of the EFG as a

powerful program comprehension tool: (a) a verification problem for the Linux kernel, and (b)

a side-channel vulnerability detection problem for Java bytecode. We have built an interactive

tool for creating EFGs for C, Java, and Java bytecode. While CFGs can be complex with

exponentially many paths, we have developed an efficient algorithm to transform a CFG to an

EFG. The algorithm is linear with respect to the number of CFG nodes and edges.

4.5 Enabling Technology & Interactive Reasoning

Interactive reasoning can be performed using visual models and their source correspondence.

The interactions can go from one visual model to another one, go from a visual model node to

its corresponding source code, or go from source code to a corresponding visual model. One

can click on a function node in a visual model (e.g., MPG) to open up the EFG for the selected

function in MPG and observe the control flow paths within the function. The EFG nodes

www.manaraa.com

25

correspond to statements in the source code. One can click on a EFG node to observe the

corresponding source code. Similarly, one can click on a pointer in source code to show the

corresponding PtG. Clicking a points-to relation takes the user to the source code expression

where the points-to relation has been created.

To enable such interactive reasoning, we built our EEV machinery on top of Atlas [3, 37]

which is a graph database platform for program analysis and comprehension. It provides a shell

and one can interactively (i.e., visually and/or programmatically) query and mine programs

to gather additional evidence. Atlas also provides Smart Views to provide instant feedback

and interactive software graph visual models as the analyst clicks on code artifacts or other

visual models. A number of out-of-the-box smart views are provided for common queries for

building call graphs, data flow graphs, type hierarchies, dependency graphs, and many other

useful results. For example, when the analyst clicks on a function either in a visual model or

source code, the call graph smart view (if selected) will instantly produce the call graph for

the selected function. The produced smart view appears on a side tab that does not interfere

with the analyst and keeps him focused on the current task. Figure 4.4(b) shows the call graph

smart view for the selected function dswrite in the source code panel (Figure 4.4(a)).

www.manaraa.com

26

F
ig

u
re

4.
4

C
al

l
gr

ap
h

sm
ar

t
v
ie

w
fo

r
se

le
ct

ed
fu

n
ct

io
n

d
s
w
r
i
t
e

www.manaraa.com

27

CHAPTER 5. EVENT FLOW GRAPH FOR PROGRAM

COMPREHENSION

The Control Flow Graph (CFG) is valuable for understanding program behaviors. However,

in real-world software the CFG can be very large and complex. This chapter presents a compact

derivative of the CFG, called the Event Flow Graph (EFG). Mathematically, the EFG defines an

equivalence relation on CFG paths, where each path in the EFG corresponds to a multitude of

CFG paths with identical traces of events of interest. We present two important applications to

show the use of the EFG as a powerful program comprehension tool: (a) a verification problem

for the Linux kernel, and (b) a side-channel vulnerability detection problem for Java bytecode.

Using the Atlas platform, we have built an interactive tool for creating EFGs for C, Java, and

Java bytecode. While CFGs can be complex with exponentially many paths, we have developed

an efficient algorithm to transform a CFG to an EFG. The algorithm is linear with respect to

the number of CFG nodes and edges.

5.1 Introduction

The CFG [14] is a graph representing all paths that the program may traverse during its

execution. CFGs are central to any static analysis of the flow of execution and data-relationships

in a computer program. The number of control flow paths grows exponentially with non-nested

branch nodes. Our empirical study of the Linux kernel shows many functions with very large

number of execution paths. For example, function register cdrom1 has 20 non-nested branch

nodes. This path explosion increases with inter-procedural analysis as a path from the caller

function splits into multiple paths in the called function.

1http://lxr.free-electrons.com/source/drivers/cdrom/cdrom.c?v=3.19#L586

http://lxr.free-electrons.com/source/drivers/cdrom/cdrom.c?v=3.19#L586

www.manaraa.com

28

We define a compact derivative of the CFG called the Event Flow Graph (EFG). The

purpose of the EFG is to simplify the corresponding CFG as much as possible while retaining

all relevant execution traces for a given problem. We call a relevant execution trace an event

trace. Defined for each CFG path, it is the sequence of nodes corresponding to events relevant

for a given problem. Two CFG paths are equivalent if they have the same event trace. The

EFG retains all event traces from the CFG but it has only one path for each distinct event

trace. The non-branch nodes not relevant to the problem and the branch nodes not leading to

distinct event traces are elided by the CFG to EFG transformation. We describe an efficient

linear-time algorithm for this transformation.

We present two applications to show the fundamental importance of EFGs for program

comprehension. The first application is lock/unlock pairing: verify that each lock event L is

paired on all feasible execution paths with unlock events U that release the lock acquired by L.

For this application, the relevant events are Lock, Unlock, and other program statements that

pass the pointer to the lock object. The CFGs and EFGs, for pairing analysis of 66, 609 Lock

instances in three recent Linux versions, are posted on a website [6]. The second application

is detecting sophisticated vulnerabilities that can lead to algorithmic complexity (AC) or side-

channel (SC) attacks [10]. For this application, the relevant events are loops with differential

time or space behaviors.

The program comprehension scenarios for the two applications are as follows. For verifying

the pairing between Lock and Unlock, program comprehension support is important for: (a)

cross-checking results of automated pairing, and (b) human-in-the-loop pairing for difficult

cases where automated pairing is intractable. For detecting AC or SC vulnerabilities, program

comprehension support is important for: (i) hypothesizing potential AC or SC attacks, and

(ii) proving or refuting each attack hypothesis. Apart from being a compact graph, the EFG

is important for focusing on critical branch nodes. For the first application, it brings out the

branch nodes critical for determining the feasibility of paths where a Lock is not followed by a

corresponding Unlock. For the second application, it brings out the branch nodes critical for

selecting paths for AC or SC attacks.

www.manaraa.com

29

This chapter has the following key research contributions:

• A rigorous formulation of the EFG as a fundamental concept for reducing the cognitive

burden by simplifying the CFG while retaining problem-specific execution behaviors.

• Two important applications to show the use of the EFG as a powerful program compre-

hension tool.

• A quantitative study of reductions afforded by the CFG to EFG transformation for real-

world software.

The remainder of the chapter is organized as follows. We first present the motivation in

Section 5.2. Next, Sections 5.3 and 5.4 present two applications to show the fundamental

importance of EFGs for program comprehension. Section 5.5 describes the tool capabilities for

constructing EFGs. Section 5.6 presents the linear-time algorithm for constructing the EFG

from its corresponding CFG. Our empirical assessment of EFGs using three recent versions of

the Linux kernel is presented in Section 5.7. Section 5.8 describes the related work. Finally,

we conclude in Section 5.9.

5.2 Motivation

We present two examples to show the simplifications achieved by EFGs.

5.2.1 A Linux Example

The following example from the Linux kernel (v3.19) illustrates how an EFG greatly simpli-

fies the verification of pairing between Lock and Unlock. Figure 5.1 shows an example of a CFG

and its corresponding EFG. The EFG is constructed with respect to Lock and Unlock events. The

CFG has 5 branch nodes resulting in 8 paths after the lock. Some of these paths go through a

complex loop with two exits. 4 out of 5 branch nodes are irrelevant to the verification because

all the paths branching from them lead to the Unlock and are thus equivalent. These 4 branch

nodes get eliminated in the EFG and the 7 paths are represented by a single path in the EFG.

Thus, the EFG simplifies the verification task by compacting the CFG.

www.manaraa.com

30

Figure 5.1 CFG and EFG for the function hwrng attr current store

The EFG also simplifies the path feasibility check. As seen from the EFG in Figure 5.1(b),

there is a path with missing Unlock and the feasibility of that path must be checked. If feasible,

it is a bug. Otherwise the particular Lock is correctly paired. The EFG has retained only the

condition that is necessary to verify the path feasibility, the other 4 conditions from the CFG

are not retained in the EFG. If the lock is granted, then the particular condition is false. So,

the true path in Figure 5.1(b) is not feasible and thus the pairing is correct.

Similar to this example, our empirical observation on real-world software shows that the set

of problem-specific events is usually sparse and consequently EFGs are typically significantly

smaller compared to the corresponding CFGs. A quantitative study of the Linux kernel is

presented later in Section 5.7.

www.manaraa.com

31

5.2.2 Loop Call Graph

The following example illustrates how EFGs can be used to focus on loops. As mentioned

earlier, loops are important for detecting AC and SC vulnerabilities.

The Loop Call Graph (LCG) is a directed graph whose nodes are methods that contain

intra-procedural loops and methods that reach loops through call chains. There is an edge

from method m1 to m2 in the LCG if method m1 calls method m2. Further, an edge is colored

if the callsite of method m2 in method m1 is located within an intra-procedural loop.

The LCG is an example of extending the EFG to capture relevant behaviors across methods.

Within each method, we can have the EFG that captures loops by treating loop headers and

callsites which may reach a method with a loop. The LCG enables us to explore and understand

loops nested across methods. We have developed interactive tool support so that one can

navigate through inter-procedural loops using the LCG and click on a method to view the

intra-procedural EFG.

Figure 5.2 shows the LCG for TimSort [11], a defacto sorting algorithm implemented in

several languages including Java and Python. In Java bytecode, TimSort contains 20 loops

that are distributed among 11 different methods. When a method in the LCG is selected,

the intra-procedural EFG shows loops shaded darker for each level of nesting (shown within a

dashed callout in Figure 5.2. To recover loops in bytecode, we leverage the Decompiled Loop

Identification algorithm presented by Wei et al. [91].

TimSort has many pieces to it with variants of sorting algorithms working together to

achieve highly optimal performance depending on the size and ordering of the data to be

sorted. The complex internal structure of TimSort is revealed by the EFG that focuses on

loops.

5.2.2.1 Loop-based Intra-procedural EFG

An LCG helps to navigate through inter-procedural loops. By clicking on a LCG node,

we can view the intra-procedural EFG. Figure 5.3 shows the CFG and Figure 5.4 shows the

loop-based EFG. The highlighted branch points are the loop headers. The EFG retains three

www.manaraa.com

32

java.util

TimSort

sort

binarySortminRunLength

gallopRight

mergeHimergeLo

mergeCollapse mergeForceCollapse countRunAndMakeAscending

mergeAt

gallopLeft

reverseRange

call call call

call call

call

call

call

call

call

call

call

call

call

call

call

specialinvoke $r0.<java.lang.AssertionError: void <init>()>();

return $i1; →

i3 = i3 | $i0;

if $z0 != 0
goto label1;

label3:
if i2 >= 32 goto label2;

label2:
$i0 = i2 & 1;

i2 = i2 >> 1;

$r0 = new java.lang.AssertionError;

goto label3;

if i2 >= 0
goto label1;

→ i2 := @parameter0: int;

$i1 = i2 + i3;

throw $r0; →

label1:
i3 = 0;

$z0 = <TimSort: boolean $assertionsDisabled>;

Figure 5.2 Loop Call Graph for TimSort Algorithm

other branch points because they are differential branch points with branches that are distinct

with respect to loops. As discussed later, loops are important for detecting SC vulnerabilities.

In a SC attack, the attacker controls a differential branch point using inputs to observe the

difference in space or time behavior and learns a secret (e.g., a password).

5.3 Application: Verify Pairing

We present four instances to show different program comprehension scenarios. The first

scenario is to verify correct pairing of Lock and Unlock. The second scenario is to argue that

the pairing is not correct and thus it is a bug. The third scenario is to reason about a case

when the Lock happens inside a loop, looks like a bug at a cursory glance but it is not a bug

on a thoughtful review of the EFG. The fourth scenario is an EFG quirk due to a peculiar

programming pattern. These instances are drawn from the Matching Pair Graphs (MPGs) [47]

and the EFGs posted on our website [6] for each of the 66, 609 Lock instances from three recent

versions (3.17-rc1, 3.18-rc1, and 3.19-rc1) of the Linux kernel. The MPG, defined for each Lock

www.manaraa.com

33

Figure 5.3 CFG with marked loop headers Figure 5.4 Loop-based EFG

instance, provides the call graph of relevant functions for the Lock. The EFGs are given for all

the relevant functions.

5.3.1 Correct Lock-Unlock Pairing

Figure 5.5(a) shows the MPG for the lock in function hso free serial device. Figures 5.5(b)

and 5.5(c) show the EFGs for the MPG functions hso free shared int and hso free serial device,

respectively.

In this example, it is easy to observe from the EFG of function hso free serial device that

the lock is followed by a branch node with two paths: (1) one path leads to a matching unlock

(intra-procedural), and (2) the other path leads to a call to function hso free shared int (blue-

colored node). The EFG of the called function hso free shared int shows a matching unlock on

all paths within the called function.

www.manaraa.com

34

Figure 5.5 An example of correct pairing

5.3.2 Lock-Unlock Pairing Bug

Figure 5.6(a) shows the MPG for the lock in the function toshsc thread irq. Figure 5.6(b)

shows the EFG for toshsc thread irq.

The EFG for toshsc thread irq shows a path on which the lock is not followed by an unlock.

As seen from the EFG, the path is feasible if the boolean expression (C1C2) is true. To complete

the verification, one must verify that the boolean expression is satisfiable and conclude that

the automatically reported violation is indeed a violation. This bug was reported to the Linux

organization and it was fixed in later version.

5.3.3 Pairing Includes Loop

The EFG in this example is an unusual case. Figure 5.7(a) shows the MPG for the Lock

in the function destroy async and the EFG in Figure 5.7(b) shows that the Lock is matched

correctly on two paths. However, there is a dangling Unlock upon the entry to the loop. This

raises the question of whether there is another Lock before the loop, which would be required

for a correct pairing. Since a separate EFG is created for each instance of Lock, the other Lock

www.manaraa.com

35

Figure 5.6 A bug discovery using EFGs

is not seen in this EFG. However, there is another Lock before the loop in this function. Thus,

it is not an error but this unusual situation does require a careful review of the EFG.

5.3.4 An EFG Quirk

This example brings out an EFG quirk due to a peculiar programming pattern. Fig-

ures 5.8(a), (b) and (c) respectively show the MPG, EFG, and CFG for the function drxk gate crtl.

The EFG shows that the Lock is not matched by an Unlock. However, the EFG is not conclusive

in this case.

The MPG hints that the EFG may not be enough. According to the MPG, drxk gate crtl

calls Lock and Unlock. However, the Unlock is missing in the EFG. The CFG shows that the

Lock and Unlock are on two mutually exclusive paths and that is the reason the Unlock does not

show up in the EFG for this Lock. The mutually exclusive paths are governed by a branch node

marked as C. If C = true, the Lock executes, otherwise the Unlock executes.

www.manaraa.com

36

Figure 5.7 EFG points to a missing lock preceding a loop

The Lock and Unlock on disjoint paths could pair with each other if drxk gate crtl is called

twice, first with C = true and then with C = false. This amounts to using drxk gate crtl first

as a lock and then as an unlock. A quick query shows that drxk gate crtl is not called directly

anywhere. Thus, it is either dead code or drxk gate crtl is called using a function pointer.

This example shows an unusual programming pattern which would be intractable for a fully

automated verification. A human-in-the-loop approach is crucial to handle such difficult cases.

5.3.5 Comprehension-Driven Verification

Formal verification has been the holy grail of software engineering research [44]. Automated

software verification methods have led to advances in data and control flow analyses, and appli-

cations of techniques such as Binary Decision Diagrams (BDDs) to analyze large software [58].

However, there are two fundamental limitations: (A) a completely automated and accurate

analysis encounters NP hard problems [32, 79, 87], and (B) formal verification methods work

mostly as automated black boxes with little support for cross-checking [1,2,5,39,41,83,89,98].

We used the Linux Driver Verification tool (LDV) [5] to verify the pairing of Lock and Unlock.

The above examples are drawn from the 22, 843 (34.3)% Lock instances that LDV could not

verify.

www.manaraa.com

37

Figure 5.8 An EFG Quirk

Comprehension-driven verification is important for at least two reasons. First, it is the

only alternative for cases where fully automated analysis is not possible. Second, it is the only

way to cross-check the results of a fully automated analysis which may or may not be correct.

Cross-checking is especially important for critical systems where failures of software can be

catastrophic.

The EFG is broadly useful for a comprehension-driven solution for the Matching Pair Ver-

ification (MPV) problem, which involves verifying the correct pairing of two events on all

possible execution paths. Specific examples of such events can be: allocation and deallocation

of memory, locking and unlocking of mutex, or sensitive source and malicious sink.

5.4 Application: Find Vulnerability

Detecting sophisticated AC or SC vulnerabilities is like searching for a needle in haystack

without knowing what the needle looks like. These sophisticated vulnerabilities are one-of-a-

kind. A fully automated approach to detect these vulnerabilities is not possible. Detecting

AC and SC vulnerabilities often require domain-specific knowledge [25, 42]. The detection

www.manaraa.com

38

requires exploring software to identify vulnerable code, conceiving plausible attack hypotheses,

and gathering evidence by analyzing software to prove or refute each hypothesis. EFG-based

program comprehension is important to support such detection.

This section motivates and illustrates the need for the EFG to detect SC vulnerabilities

in software. The EFG helps the analyst to focus on the space and time changing events and

their governing conditions. If executing such events causes observable space/time differences

then it creates the possibility of a SC vulnerability. The governing conditions need to be user-

input controlled for an attacker to force the execution of paths with observable space/time

differences. Thus, to detect SC vulnerabilities, the analyst must understand the program to

answer specific questions: (a) What are the space/time changing events present in the app?

(b) What are the governing conditions controlling the execution of these events? (c) Can the

governing conditions be controlled by user inputs? We propose a three-phase approach for this

application.

This application involves several complex program comprehension problems. We show that

the EFG is useful when the analyst has to gather evidence to prove or refute an SC attack

scenario.

Phase I:Automated Exploration. The objective is to precompute information that serves as

the basis for the analyst to begin the investigation. The precomputed information includes the

locations of space/time changing loops and the user-input controlled conditions.

Phase II:Hypothesis Formulation. After reviewing the precomputed information, the analyst

hypothesizes possibilities for SC attacks. By the end of Phase II, the analyst has hypotheses

that need to be either validated or refuted.

Phase III:Validating the Hypotheses. The objective is: (1) to enable the analyst to gather

evidence to refine, refute, or validate each hypothesis formulated in Phase II, and (2) to help

the analyst compose the overall modus operandi of the attack.

Example. Consider a simple password checking app that compares the passwords stored in a

server against strings submitted as passwords. The app Accepts if the submitted string matches

with a stored password. The app Rejects if the match fails.

www.manaraa.com

39

At the end of Phase I, the analyst observes Thread.sleep() as a time-changing event. Based

on the taint analysis result, the analyst also knows that there are conditions that are controlled

by inputs. In the taint analysis result shown in Figure 5.9, the secret (the passwords stored on

the server) is colored red and input (the string submitted as password) is colored blue. When

the taints originating from secret and the input come together the color changes to yellow in

the taint flow graph.

The taints from the secret and the input come together when the input is compared against

the secret passwords. The result of the comparison controls conditions C1 and C2 as shown in

the taint flow graph (Figure 5.9).

Figure 5.9 Taint flows from the secret and the user-controlled input

www.manaraa.com

40

In Phase II, the analyst hypothesizes that, depending on the comparison result of the secret

passwords with the submitted password, two paths are created either by the condition C1 or

C2 such that time changing event Thread.sleep(25) happens on only one of those two paths.

Moreover, one character is compared at a time. Thus, the observed time difference can reveal

to the attacker that the character matches. By submitting different strings for password and

observing the time differences, the attacker can learn a secret password.

To validate the hypothesis, the analyst gathers evidence in Phase III to answer the following

questions:

1. Do the conditions C1 or C2 create differential paths with and without the Thread.sleep(25)

event?

2. Do the conditions depend on character-wise comparison of secret and input?

The EFG is useful for answering these questions. To answer the first question, the analyst

can create the EFG for the event Thread.sleep(25). The resulting EFG in Figure 5.10 shows that

the condition C1 actually governs a path with the event Thread.sleep(25). Thus, the execution

of Thread.sleep(25) is dependent on the comparison of the input and the secret passwords.

To answer the second question, the analyst can create the EFG with events Thread.sleep(25),

and the data flow events leading to the condition C1. If we include all such events, the EFG

can become huge and not be an effective program comprehension artifact. Our tool support a

gradual expansion of the EFG by adding a few data flow events at a time. The backward data

flow can be expanded one step at a time by adding the neighbors one data flow edge away at

each step. We expand the EFG with the new data flow events corresponding to newly added

neighbors. This EFG after expanding two steps is shown in Figure 5.11. The new events added

after expanding two steps are boxed. In this case, the new events were enough to reveal the

character-wise comparison and thus no need to expand the EFG further.

5.5 EFG Tool Support

We describe the capabilities we have created to construct EFGs. The capabilities are

developed using the Atlas platform [37].

www.manaraa.com

41

Figure 5.10 EFG with respect to Thread.sleep(25)

5.5.1 Programmed EFG Construction

The EFG for each Lock is created by transforming the CFG for the method containing the

Lock. The program for constructing EFGs works as follows:

1. Mark the Events in the CFG: The first event is the particular Lock for which the EFG

is being constructed. A taint analysis is used to identify the data flow nodes where either

the pointer to the lock object flows to another entity (e.g., assigned to another variable,

passed as a parameter to a callee, or returned to the caller). The data flow nodes are

marked as events. The Unlock operations that use a tainted pointer to the lock object are

also marked as events.

2. CFG to EFG Transformation: The CFG to EFG transformation algorithm is applied

to construct the EFG using the marked events. The algorithm is described in section 5.6.

Note that an Unlock operation will not be included in the EFG if it does not use a tainted

pointer to the lock object that we started with. For example, the Unlock from the example in

Section 5.3.4 is not included in the EFG because it is on a disjoint path.

www.manaraa.com

42

Figure 5.11 EFG with respect to Thread.sleep(25) and data flow events

5.5.2 Interactive EFG Construction

We support several interactive ways to construct EFGs. These include:

1. Create EFG using Smart View: The interaction involves: (a) select the EFG option

from the Smart View menu, (b) create the EFG on-the-fly by clicking on method nodes

in a graph. For example, after creating a graph such as the LCG, the analyst views the

EFGs for nodes from that graph.

2. Create EFG by clicking source code: The EFG can be created on-the-fly by clicking

on method names in a source code window.

3. Create EFG by selecting CFG nodes: We can select CFG nodes and use them as

relevant events to create the EFG.

www.manaraa.com

43

5.5.3 Gradual EFG Expansion

We have developed a capability for expanding the EFG gradually. We alluded to it while

describing the detection of SC vulnerability. The expansion scenario is to gradually add the

data flow events and use them to expand the EFG. For detecting SC vulnerability, we want

to expand the EFG that includes the condition node C1. We want to add the events for

computations whose results flow into C1. To do so, we select C1 and invoke the data flow

Smart View of Atlas. The Smart View window shown in Figure 5.12 has a scroll bar for

forward or backward data flow and it allows one to specify the number of steps. We get the

partial dataflow as per our specification. We select the data flow nodes from the Smart View

and add them to the set of event nodes and recreate the EFG.

Figure 5.12 Gradual EFG Expansion Interface

www.manaraa.com

44

5.6 Event Flow Graph

We present a novel algorithm to compute EFG. While the number of paths in a CFG can

be exponential, the algorithm is linear with respect to number of nodes and edges in the CFG.

It is based on Tarjan’s algorithm to compute strongly-connected components of a directed

graph [86]. The algorithm computes the EFG by performing a set of graph transformation on

a CFG.

5.6.1 Step 1: Marking Event Nodes

The first step is to mark the event nodes in the given CFG. For example, for Lock and Unlock

pairing the marked events start with the Lock, include the data-flow events in which the locked

object p is either aliased or escapes to another function as a parameter, a return value, or a

global variable, and the subsequent Unlock events.

In our CFG representation, the CFG has unique entry and exit nodes and each CFG node

corresponds to a program statement.

5.6.2 Step 2: T-Irreducible Graph

Transform GCFG, a CFG with the marked event nodes, to the T-irreducible graph GT-irr by

applying the following basic transformations T = {T1, T2, T3} until the resultant graph cannot

be further reduced by applying basic transformations.

T1: Elimination of Non-branching and Non-event Nodes

Let n be a non-event node with a single successor m. The T1 transformation is the consumption

of node n by m. Induced edges are introduced so that the predecessors of node n become

predecessors of node m. (Figure 5.13(a))

The T1 transformation eliminates every node from CFG that is neither a branch node nor

an event node.

T2: Elimination of Self-Loop Edges

Let n be a non-event node that has a self-loop edge (n, n). The T2 transformation removes

that edge. (Figure 5.13(b))

www.manaraa.com

45

The intuition behind T2 transformation is: when a loop block does not contain event nodes,

execution of the loop is immaterial. Therefore, T2 removes the self-loop edges.

T3: Elimination of Irrelevant Branch Nodes

Let n be a non-event node that has two or more outgoing edges, all pointing to the same

successor m of n. Then the T3 transformation is the consumption of node n by m and the

predecessors of node n become predecessors of node m. (Figure 5.13(c))

The intuition behind the T3 transformation is: Imagine the case where a branch node n has

only non-event nodes on its branches, and all those branches ultimately merge at node m. If

the non-event nodes on those branches are eliminated by the T1 transformation, all branches

will point to node m. Since the branching at n is irrelevant at this point, the branch node n

is eliminated.

Figure 5.13 T-irreducible graph transformations: (a)T1, (b)T2, (c)T3

Definition 1 GCG is the condensation graph of a directed graph G if each strongly-connected

component (SCC) of G contracts to a single node in GCG and the edges of GCG are induced by

edges in G.

5.6.3 Step 3: Non-Event Condensation Graph

Compute the subgraph GI of GT-irr induced by its non-event nodes. Then, construct the

non-event condensation graph GNECG of GI.

www.manaraa.com

46

5.6.4 Step 4: Event Condensation Graph

Construct a new graph GECG by adding the event nodes in GT-irr to GNECG. If an edge

exists between an SCC and an event node n in GT-irr then introduce an edge in GECG between

the contracted node for that SCC and the event node n.

5.6.5 Step 5: Condensed EFG

Transform GECG into a T -irreducible graph GcEFG by applying the set of basic transforma-

tion T = {T1, T2, T3} as in Step (2). The resultant graph GcEFG after this step is the condensed

EFG.

5.6.6 Step 6: Final EFG

Transform GcEFG into GEFG by expanding each remaining contracted SCC in GcEFG back

to the original SCC as in GT-irr. The resultant graph GEFG after this step is the EFG.

Figures 5.14(a-f) illustrate our EFG construction algorithm. The event nodes are high-

lighted.

5.6.7 Algorithm Complexity

The algorithmic complexity of constructing the EFG is O(|V |+ |E|) where |V | and |E| are

the respective numbers of nodes and edges in the CFG. For detecting the SCCs in Step (3), we

use an algorithm by Tarjan [86] to compute strongly-connected components of a directed graph.

The run-time of this algorithm is also O(|V | + |E|), yielding a linear run-time complexity of

O(|V | + |E|) for our CFG pruning (CFG to EFG transformation). The algorithm does not

depend on the number of paths.

5.6.8 Observations

Initially, we believed that Step 2, which produces the T-irreducible graph, would produce

the EFG. The produced graph is minimal in the sense that it cannot be further reduced by the

www.manaraa.com

47

Figure 5.14 CFG to EFG Transformation Illustration

three basic transformations. Then, we encountered complex examples from the Linux kernel

with huge T-irreducible graphs. These graphs include many irrelevant branch nodes that cannot

be removed by the three basic transformations. We realized that the difficulty arises due to

strongly connected components in the CFG. This realization led to the subsequent steps to

tackle strongly connected components.

Later, we are able to formalize the notion of irrelevant branch nodes and prove that Steps

3 through 6 indeed remove all irrelevant branch nodes and thus one can claim a stronger

minimality for EFG than the minimality of being T-irreducible. Besides the theoretical elegance

of the mathematical framework, the big T-irreducible EFGs we had encountered earlier got

significantly reduced. The mathematical framework and the minimality proof are presented in

the next section.

www.manaraa.com

48

5.6.9 EFG Minimality

Definition 2 A Control Flow Graph (CFG) of a program is defined as G = (V,E,>,⊥),

where G is a directed graph with a set of nodes V representing the program statements and a

set of edges E representing the control flow between statements. > and ⊥ denote the respective

unique entry and exit nodes of the graph.

Definition 3 Successors of a node u in a directed graph G, denoted by suc(u), consist of the

set of nodes v 6= u such that ∃ an edge (u, v).

Definition 4 Successors of a subgraph S in a directed graph G, denoted by suc(S), consist of

the set of nodes v /∈ S such that v =suc(u) for u ∈ S.

Definition 5 For a branch node c, a branch edge is an out-coming edge of c.

Definition 6 A branch node c is an irrelevant branch node if the following conditions are

satisfied: (1) c is a non-event node, (2) there exists a subgraph S containing c and all branch

edges of c, (3) S has no event nodes, and (4) S has a unique successor, i.e., |suc(S)| = 1.

Figure 5.15 shows an example of irrelevant branch node c.

Figure 5.15 An example of irrelevant branch node c

Definition 7 The Event-Flow Graph (EFG) GEFG of a CFG G is the node-induced subgraph

of G consisting of the event nodes, the relevant branch nodes, and the entry (>) and exit (⊥)

nodes.

www.manaraa.com

49

The above definition of EFG captures a notion of minimality by specifying that the EFG

eliminates all irrelevant branch nodes - a notion precisely defined by the above mathematical

framework. Is the EFG produced by the six steps detailed in Section 5.6 the same as the EFG

defined by the mathematical framework? The following proves that the answer is yes. Thus,

the EFG produced by the transformation in Section 5.6 satisfies the minimality constraint

described above.

Definition 8 The boundary of a subgraph S in a directed graph G, denoted by boundary(S),

is the set of nodes u ∈ S such that suc(u) ∈ suc(S).

Theorem 1 Let G be a T -irreducible and acyclic graph. Then for any subgraph S containing

non-event nodes of G: |suc(S)| ≥ 2.

Theorem 1 Proof. If a non-event node u ∈ G has only one successor then it is eliminated by

transformation T1. Thus, since G is T -irreducible, |suc(u)| ≥ 2 for all non-event nodes u ∈ G.

Also, by assumption, G is an acyclic graph. Using these two facts, we will show that every

subgraph S has a node with at least two successors outside S and thus |suc(S)| ≥ 2.

Let Pv0→vn : (v0, v1), (v1, v2), · · · , (vn−1, vn)) be a maximal path in subgraph S. Since vn

is the terminal node of this maximal path P , its successor cannot be another node in S not

on the path P . Also, the successor of vn cannot be another node on the path P because Gc

is an acyclic graph, so vn must be a boundary node and all its successors must be outside the

subgraph S. Since vn is a non-event node, |suc(vn)| ≥ 2. Since vn, a node in S, has at least

two successors outside of S, we have |suc(S)| ≥ 2. This completes the proof.

Corollary 1 Let G be a CFG and GcEFG be the condensed EFG. Then, for any subgraph S

containing non-event nodes of GcEFG, |suc(S)| ≥ 2.

Corollary 1 Proof. Note that the condensed EFG GcEFG is the graph resulting from Step

(5) of the EFG construction algorithm. By construction, the condensed graph GcEFG is a T -

irreducible graph. Also, by construction GcEFG is an acyclic graph. By applying the above

theorem to GcEFG we get the proof of the corollary.

www.manaraa.com

50

Corollary 2 The graph produced by Step (6) does not contain any irrelevant branch nodes.

Corollary 2 Proof. By construction, the graph GT-irr resulting after Step (2), consists of

only event nodes, relevant branch nodes, and the irrelevant branch nodes retained by Step

(2). We will now argue that all the irrelevant branch nodes will be eliminated when GcEFG is

constructed in Step (5). According to the definition of irrelevant branch nodes (Definition 6), a

node c is irrelevant if there is a subgraph S that contains c, all its branch edges, S has no event

nodes, and |suc(S)| = 1. It follows from this definition and from the corollary 1 that GcEFG

does not contain any irrelevant branch nodes. Thus, the final graph produced by Step (6) also

does not contain any irrelevant branch nodes, because it consists of the nodes in GcEFG and all

the event nodes.

5.7 An Assessment of EFGs

EFGs are meant to reduce the cognitive burden on the human analyst. Their utility depends

on the reduction they afford relative to the original CFG. We summarize the reductions observed

from an empirical study.

The events of interest for creating an EFG are Lock, Unlock, and the data flow events in

which the pointer p to the lock object is either aliased or escapes to another function as a

parameter, a return value, or a global variable. We created the CFG and the EFG for each

function that contains events of interest.

5.7.1 An Empirical Study

We developed a pairing analysis tool using the Atlas platform [37]. The tool was used to

create the CFG, the EFG, and the MPG for each Lock instance from three recent versions (3.17-

rc1, 3.18-rc1 and 3.19-rc1) of the Linux kernel. We enabled all possible x86 build configurations

via allmodconfig flag. The three Linux versions together include 37 MLOC and 66, 609 Lock

instances. Table 5.1 shows the mutex and spin lock and unlock calls and how they are paired.

We used the Linux Driver Verification tool (LDV) [5] to verify the pairing of Lock and Unlock.

It could verify 43, 766 (65.7)% Lock instances and it took 173 hours to do so. The instances in

www.manaraa.com

51

Table 5.1 mutex/spin Locks/Unlocks

Calls mutex synchronization spin synchronization

Lock

mutex lock spin lock

mutex trylock spin trylock

mutex lock interruptible spin lock irqsave

mutex lock killable spin lock irq

atomic dec and mutex lock spin lock bh

Unlock mutex unlock

spin unlock

spin unlock irqsave

spin unlock irq

spin unlock bh

Section 5.3 are among the instances that LDV could not verify. LDV is the current top-rated

tool in the software verification competition (SVCOMP) [18–20] in the Linux device drivers

verification category. The LDV developers generously provide us with the results on the same

versions of the Linux kernel and the same build configurations we have used.

5.7.1.1 Empirical Study Website

The CFG, EFG, and the MPG graphs for each of the 66, 609 Lock instances are available

on a website [6]. Each instance includes source correspondence. The data brings out different

types of complexities for pairing analysis. The data can be used for understanding the real-

world challenges for automated analysis. For example, it would be valuable to use the data

to analyze the 22, 843 instances that LDV cannot verify and develop a test suite which would

capture the Linux verification challenges.

5.7.2 Quantitative Assessment of EFGs

We summarize the reduction in nodes and edges in going from CFGs to EFGs. The reduction

is due to the removal of non-event nodes and irrelevant branch nodes. The reported results are

for the Linux kernel (v3.17-rc1, v3.18-rc1, v3.19-rc1).

Table 5.2 shows the distribution of nodes, edges, and branch nodes for both the CFGs and

EFGs for all the relevant functions. Compared to 30, 914 CFGs, only 115 EFGs have more

than (30) nodes, which is a reduction of 99%. Compared to 35, 145 CFGs, only 879 EFGs have

www.manaraa.com

52

more than (30) edges, which is a reduction of 97%. Compared to 17, 120 CFGs, only 1, 810

EFGs have more than (10) branch nodes, which is a reduction of 89%. EFGs simplify path

feasibility checks by reducing the number of branch nodes. Compared to 8, 644 CFGs, 30, 999

EFGs have no branch nodes, which is a 259% increase of cases where EFG eliminates the need

for path feasibility checks.

Table 5.2 Linux kernel CFG and EFG stats

Graph Artifact Distribution

C
F

G

Nodes
≤ 5 6→ 10 11→ 30 31→ 50 > 50

5,022 11,724 35,665 14,805 16,109

Edges
≤ 5 6→ 10 11→ 30 31→ 50 > 50

6,670 10,025 31,485 15,002 20,143

Br-Nodes
= 0 1→ 5 6→ 10 11→ 30 > 30

8,644 40,836 16,725 13,586 3,534

E
F

G

Nodes
≤ 5 6→ 10 11→ 30 31→ 50 > 50

66,820 12,515 3,875 109 6

Edges
≤ 5 6→ 10 11→ 30 31→ 50 > 50

58,662 14,314 9,470 690 189

Br-Nodes
= 0 1→ 5 6→ 10 11→ 30 > 30

30,999 45,282 5,234 1,756 54

The reductions from CFG to EFG is particularly important for a CFG with a large number

of branch nodes. Table 5.3 lists the reductions for the ten functions with the largest number

of branch nodes. For example, for function dst ca ioctl the reductions from CFG to EFG are:

from 349 to 2 nodes, from 518 edges to only one edge, and from 163 to no branch nodes.

Table 5.3 A comparison of CFG vs. EFG

Function Name
Nodes Edges Branch Nodes

CFG EFG CFG EFG CFG EFG

client common fill super 1,101 15 1,179 28 249 13

kiblnd create conn 731 18 925 34 197 15

CopyBufferToControlPacket 392 20 559 39 180 18

kiblnd cm callback 662 38 831 56 170 15

kiblnd passive connect 622 22 784 44 164 20

dst ca ioctl 349 2 518 1 163 0

qib make ud req 621 10 821 15 156 5

cfs cpt table al 522 7 672 13 153 6

private ioctl 569 16 732 24 148 8

vCommandTimer 490 47 623 75 143 28

www.manaraa.com

53

5.8 Related Work

Event flow graphs are inspired by the work done by Neginhal et al. [65] where they in-

troduced the notion of event view. They require the user to determine irrelevant nodes/edges

to be removed. They do not have an algorithmic notion to make CFG compact. We have a

mathematical definition of EFG and a linear-time algorithm to compute the EFG.

The idiom of events has been studied in the context of distributed systems and performance

analysis [51, 78]. While we share the common goals of simplicity, accuracy, and scalability of

program analysis, the context, the concept, and the applicability of EFG is quite different from

the above cited research.

CFG pruning techniques have been proposed in [29, 77] to overcome the computational

complexity of exploring all paths. Other pruning techniques have been introduced by Choi

et al. [30] and Ramalingam [76]. Both proposed an equivalence relation to optimize data flow

graphs. The EFG advances these techniques, introduces a new event-based equivalence relation,

and guarantees the optimality of reduction from CFG to EFG.

The Binary Decision Diagram (BDD) [13] has been used in different contexts of program

analysis as a way to reduce the explosion of state space [16,60,84,93]. The Binary Decision Tree

(BDT) to BDD reduction has been also used for path-sensitive analysis [98,102]. Unlike BDT

to BDD reduction, the EFG transformation achieves further reduction and does not require the

input CFG to be acyclic. The EFG transformation deals with cyclic graphs by incorporating a

linear-time algorithm by Tarjan [86] to compute strongly-connected components of a directed

graph. EFGs can be used in place of BDT to BDD reduction.

5.9 Conclusion

This chapter is about the EFG, an application-specific program comprehension model. The

chapter provides a rigorous formulation of a compact derivative of the CFG as a fundamental

concept to understand and reason about execution behaviors relevant for a particular appli-

cation. The goal is to reduce the cognitive burden by simplifying the CFG while retaining

application-specific execution behaviors.

www.manaraa.com

54

The chapter presents Lock and Unlock pairing and side-channel vulnerability detection as

two diverse applications of the EFG as a powerful program comprehension tool. The pairing

analysis application can be readily used in other contexts that involve pairing of two events,

for example, the memory leak verification problem.

The tool support for EFGs is developed using the query language and visualization ca-

pabilities of the Atlas platform [37]. The tool support is interactive and it integrates inter-

and intra-procedural program comprehension. For example, it provides LCG to view the loops

across methods and then by clicking on a method one can view the loop-based EFG for that

method.

The utility of the EFG depends on how compact it is in comparison to the CFG. The chapter

presents quantitative data from an empirical study on three recent versions of the Linux kernel.

The data shows significant reductions from CFGs to EFGs. The CFGs and EFGs, for each

of the 66, 609 Lock instances for three recent versions (3.17-rc1, 3.18-rc1, and 3.19-rc1) of the

Linux kernel, are posted on a website [6]. It includes 22, 843(34.3%) Lock instances that could

not be verified by LDV [5], the currently top-ranked Linux verification tool. This data makes

it easy to cross-check results produced by an automated pairing tool. It also brings out the

spectrum of difficulties for automated verification.

www.manaraa.com

55

CHAPTER 6. L-SAP: EVIDENCE-ENABLED LINUX VERIFICATION

FOR LOCK/UNLOCK PAIRING ANALYSIS

6.1 Introduction

Synchronization problems can be catastrophic - a business-transaction server can crash

resulting in a big financial loss, or a safety-critical control system can halt causing loss of

lives. With multi-threading and event-driven processing, it is challenging to ensure resilience

of software systems to synchronization problems. These problems can elude dynamic analyses

and regression testing because their occurrence often depends on intricate sequences of low-

probability events [41]. Performing multiple runs of a program to examine all possible behaviors

is prohibitively expensive and time-consuming. Thus, automated static analyses are crucial to

complement testing and dynamic analyses.

An accurate, scalable, and completely automated static analysis has been the holy grail

of research. Over the years, many static analysis approaches have been proposed to discover

synchronization problems in C programs [29, 39, 41, 68, 73, 81, 89]. These state-of-the-art ap-

proaches are based on older versions of the Linux kernel (< 4 MLOC) or on medium-sized

programs that are orders of magnitude smaller. These approaches have led to new advances

in data and control flow analyses, and new heuristics to apply techniques such as Binary Deci-

sion Diagrams (BDDs) to analyze large software [58]. These advances have pushed further the

boundaries of scalability and accuracy. However, there is a fundamental limitation: a general-

purpose accurate lock/unlock pairing analysis is not intrinsically scalable as it involves NP hard

problems [32,79,87].

Our approach is to specifically address commonly occurring roadblocks for scalability and

accuracy to arrive at a solution that works well in practice. The Linux kernel code base has

www.manaraa.com

56

unique combinations of specific characteristics that attract researchers and practitioners to

challenge their tools [22]. This motivated us to use the Linux kernel code base as a good target

system to test our approach. Algorithmic innovations presented in this paper are inspired by

the following guiding research question: what scalability and accuracy roadblocks are typical

in practical applications, which can be addressed by customized program analysis that achieves

accuracy and scalability without being too restrictive?

Consider the lock/unlock pairing analysis: a lock event L is paired with an unlock event U

iff U can release the lock acquired by L. The existence of unpaired locks on feasible execution

paths results in synchronization problems. This pairing of a lock with its corresponding unlocks

on all possible feasible execution paths requires the following: (a) a data flow analysis to map

each lock to corresponding unlocks that reference the same lock object, (b) a control flow analysis

to pair each lock with corresponding unlocks. This is achieved by identifying all possible intra-

and inter-procedural execution paths that have a lock event ensued by an unlock event, and (c)

a feasibility analysis to check the feasibility of an execution path on which a lock is not ensued

by an unlock. A general-purpose, completely automated, and accurate analysis is intractable

for each of the above three requirements.

We present a novel scalable and accurate static lock/unlock pairing analysis that is explicitly

designed to handle the analysis roadblocks we observed in the Linux kernel. We design a type-

based analysis and leverage the MPG (Section 6.2.2) to satisfy the analysis requirement (a)

to map each lock with a set of corresponding unlocks to perform object-sensitive analysis.

To efficiently meet the analysis requirement (b), we use event flow graphs (Section 6.2.3) to

minimize the set of paths that must be examined for path-sensitive accurate analysis. We also

design compact function summaries for context-sensitive scalable inter-procedural analysis. For

requirement (c), among this minimized set of paths, we separate the paths on which a lock is

not ensued by an unlock. By construction, this is a necessary and sufficient set of paths that

should be checked for feasibility. Thus, the need for feasibility analysis is also minimized by

applying it only in the cases where it is needed.

We developed L-SAP, a tool that uses our novel lock/unlock pairing analysis. It analyzes

each lock and it produces three categories of results: (C1) an automatically verified instance

www.manaraa.com

57

with correct lock/unlock pairing, (C2) an automatically verified instance with a unpaired lock

i.e. a feasible path with a lock not ensued by unlock, and (C3) an allocation instance where

the automated verification is inconclusive. L-SAP produces for each lock instance the following

evidence: the matching pair graph (MPG) (Section 6.2.2) to assist with the inter-procedural

reasoning by identifying relevant functions and their interactions, and the event flow graph

(EFG) (Section 6.2.3) to assist with intra-procedural reasoning for each relevant function. We

have applied L-SAP to recent three versions (3.17-rc1, 3.18-rc1, and 3.19-rc1) of the Linux

kernel totalling > 37 MLOC. L-SAP is fast and scalable, and it is able to accurately pair

66, 151 (99.3% of the total) locks in 3 hours with no false negatives. Our analysis discovered

7 synchronization bugs that were reported to the Linux community and accepted by them.

Compared with the Linux Driver Verification (LDV) tool [5], a top-rated verification framework

in the competition on software verification (SV-COMP) [18–20] in the category of Linux device

drivers verification, L-SAP reduces by 49× the number of statically unpaired locks and by 59×

the analysis time.

To the best of our knowledge, we are the first to perform lock/unlock pairing analysis of the

recent versions of the Linux kernel. Our evaluation results show that L-SAP provides a scalable,

practical, and accurate lock/unlock pairing analysis for the Linux kernel. L-SAP is publicly

available [4] so that other researchers can reproduce our results. L-SAP is developed using

Atlas [37], which is a platform to develop program comprehension, analysis, and validation

tools.

To summarize, this chapter reports the following research contributions:

1. A novel scalable and accurate lock/unlock pairing analysis algorithm and its implemen-

tation in the tool L-SAP (Section 6.2.4).

2. An exhaustive pairing analysis that provides for every lock a verdict (i.e., paired/un-

paired) accompanied with evidence for manual validation.

3. Efficient object- and context-sensitive inter-procedural analysis by incorporating: type-

based analysis to map a lock to appropriate unlocks (Section 6.2.1), and compact function

summaries (Section 6.2.4.1).

www.manaraa.com

58

4. A comprehensive evaluation of L-SAP on three recent versions of the Linux kernel done

automatically in 3 hours. The experimental results show that L-SAP correctly pairs

99.3% of the locks and identifies 7 synchronization bugs (Section 6.4).

The remainder of the chapter is organized as follows. We first describe our static lock/unlock

pairing analysis in Section 6.2. Next, Section 6.3 describes the tool support for the pairing

analysis as well as the produced evidence. Section 6.4 presents the experimental results on

three recent versions of the Linux kernel. Finally, we conclude in Section 6.5.

6.2 L-SAP Approach

The lock/unlock pairing analysis used in L-SAP is explicitly designed to pair lock/unlock

function calls for mutex and spin synchronization mechanisms, both widely used in the Linux

kernel. Table 6.1 shows the specific lock/unlock function calls for mutex and spin synchronization

mechanisms in the Linux kernel.

Table 6.1 Lock/Unlock function calls for mutex/spin synchronization mechanisms in Linux

kernel

Calls mutex synchronization spin synchronization

Lock Calls

mutex lock spin lock

mutex trylock spin trylock

mutex lock interruptible spin lock irqsave

mutex lock killable spin lock irq

atomic dec and mutex lock spin lock bh

Unlock Calls mutex unlock

spin unlock

spin unlock irqsave

spin unlock irq

spin unlock bh

Figure 6.1 shows an overview of our lock/unlock pairing analysis. The pairing analysis has

five steps. In the first step, L-SAP maps each lock to the set of corresponding unlocks. The

mapping is performed via type-based analysis, which introduces the notion of signature. A

lock L(o) is mapped to unlock U(m) iff the objects o and m have the same signature. In the

second step, for each signature o, L-SAP creates the matching pair graph (MPGo) as defined

in [47] (Section 4.1). The nodes in this graph provide the minimum set of functions for inter-

www.manaraa.com

59

procedural pairing analysis of locks and unlocks with signature o. The directed edges in MPGo

represent call relationships. In the third step, for each function in MPGo, L-SAP prunes the

CFG to produce a compact CFG named the event flow graph (EFG) (Chapter 5. The EFG

enables efficient path-sensitive lock/unlock pairing by defining an equivalence relation on the

CFG paths such that it is sufficient to examine only one path from each equivalence class.

These first three steps set the stage for an efficient pairing algorithm. In the fourth step, L-

SAP iterates over the set of signatures to apply the pairing algorithm to each MPGo and pair

the locks and unlocks with signature o. For efficiency, the pairing algorithm computes context-

sensitive function summaries using the EFGs computed in the previous step. In the fifth step,

L-SAP calculates Boolean expressions for the conditions governing each potential-error path

on which a lock with signature o is either: (i) not paired with an unlock with signature o, or

(ii) paired with a lock of signature o (a potential deadlock). Then, using BDDs [92], L-SAP

examines whether the potential-error paths are feasible. These five steps are described below

in detail.

Figure 6.1 An Overview of L-SAP Pairing Analysis

www.manaraa.com

60

6.2.1 Step 1: Lock/Unlock Mapping

The lock/unlock mapping is performed through type-based analysis via the notion of a

signature such that: a lock L(o) is mapped to unlock U(m) iff the object o and m have the

same signature. The signature-based analysis works as follows:

Consider the pointer P given by the expression: (an · · · a3(.||->)a2(.||->)a1). In this expres-

sion, P is being accessed through a chain of member-selection C operators (. and/or ->). We

define the hierarchal type for P as the tuple (Tan , · · · , Ta3 , Ta2 , Ta1), where Tai denotes the type

associated with the member ai. For example, the hierarchal type for pointer (x->y->z) is given

by the tuple (X,Y, Z) where Tx = X,Ty = Y, and Tz = Z. For a directly referenced pointer,

the hierarchal type is the same as its type. For example, the hierarchal type for pointer (k) is

Tk.

We use the term object signature (So) to denote: (1) the object (variable) name in case o is a

global variable that is directly referenced, and (2) the hierarchal type for the object (pointer) o

otherwise. Based on these definitions, L-SAP maps each lock to a set of corresponding unlocks

as follows:

1. Mine all callsites to lock and unlock based on Table 6.1.

2. A lock L(o) is mapped to unlock U(m) iff So = Sm.

Let us illustrate this through an example: let us say that function A has the lock L(x->y->z)

and function B calls unlock U(l->m->n). Then, L-SAP will map the lock L(x->y->z) to the

unlock U(l->m->n) iff both signatures (Sx->y->z and Sl->m->n) are the same. In other words,

their hierarchal types are the same where (Tx, Ty, Tz) = (Tl, Tm, Tn). In case of a global lock

object, the signature is the global variable’s name.

6.2.2 Step 2: Matching Pair Graph

For each signature o, L-SAP creates a matching pair graph (MPGo) as defined in [47]

(Section 4.1). The nodes in the graph provide the minimum set of functions for inter-procedural

pairing analysis of locks and unlocks with signature o. The directed edges in MPGo represent

call relationships. MPGo captures the four inter-procedural cases identified in Section 2.3. For

www.manaraa.com

61

the fourth case resulting from asynchronous processing, the MPGo would have two disconnected

nodes, i.e., the corresponding functions are not connected by a call sequence because they are

invoked asynchronously.

We take a signature o and the associated locks/unlocks as inputs, then compute the match-

ing pair graph MPGo by running a set of Atlas queries against the system’s call graph. This

query-based approach is faster compared to recursive traversing of the system’s call graph.

Currently, we do not resolve function pointers. This is a source of inaccuracy. Consider the

example of lock LA in function A and unlock UB in function B where LA is mapped to UB as

both have the same signature o. Now, assume function C calls A and B via function pointers.

Because, we do not resolve function pointers, we will miss function C in MPGo; it will contain

only the functions A and B. The good thing is, the matching pair graph provides the human

analyst with hints about the pairing possibility between LA and UB. Results in Section 6.4

show only a small percentage of unpaired locks due to presence of function pointers.

6.2.3 Step 3: Event Flow Graph

In this step, we prune the CFG to form equivalence classes of CFG paths. This is done by

constructing for each CFG the corresponding EFG using the linear-time algorithm as described

in Chapter 5. The initial step in our CFG pruning algorithm is marking the event nodes in

the given CFG that are relevant to lock/unlock pairing analysis. In our CFG representation,

the CFG has unique entry and exit nodes and a CFG node corresponds to a single program

statement. Given the matching pair graph MPGo for signature o and the CFG GCFG for

function f ∈MPGo, the events of interest for lock/unlock pairing are as follows: (1) the CFG

nodes that correspond to lock/unlock function calls that are associated with signature o, and

(2) the CFG nodes that correspond to call-sites for functions in MPGo. Next, L-SAP takes

as input: the GCFG and its marked event nodes and produces the corresponding EFG (GEFG)

using the EFG transformations defined in Section 5.6.

www.manaraa.com

62

6.2.4 Step 4: Pairing Algorithm

L-SAP iterates over the set of signatures to apply the pairing algorithm to each MPGo

to pair the locks and unlocks with signature o. For efficiency, the pairing algorithm computes

context-sensitive function summaries using the EFGs computed in the previous step. Note that,

if a function appears in two matching pair graphs with corresponding signatures o1 and o2, then

the function would have two contexts as well as two summaries. L-SAP visits the matching

pair graph in a bottom-up manner while: (1) computing compact function summaries for each

visited function, plugging in the summaries of the callees at call-sites while analyzing the callers,

and (2) keeping track of the lock/unlock pairs, unpaired locks, and deadlocks.

6.2.4.1 Compact Function Summaries

For each function, the function summary is computed by traversing its EFG in a depth-first

manner while keeping track of all entry/exit locks/unlocks on all EFG paths. Let us illustrate

our approach to computing compact function summaries. Figures 6.2(a) and (b) show the EFG

for functions f and g. In this example, f calls g at statement: Call g;. The function summary

for g should retain the information relevant for analyzing f . The pairing analysis is concerned

with what follows a given lock: (i) a lock followed by unlock implies pairing, (ii) a lock followed

by another lock implies a deadlock, and (iii) a lock not followed by lock or unlock implies an

unpaired lock.

The function summary consists of two sub-summaries: entry and exit summaries.

The entry summary for g summarizes: (i) the possible unlock(s) in g that can be paired

with LP (o), (ii) the lock(s) in g that cause deadlocks with LP (o), and (iii) the possibility of

not pairing LP (o) with lock/unlock in g. Case (iii) is possible if there exists a path in g that

does not have lock/unlock events. The entry summary for g - denoted by entry summary in

Figure 6.2(d)- includes: the entry locks (L1(o) and L3(o)), the entry unlock (U2(o)), and the

THROUGH state denoting the existence of paths in g that do not have any locks/unlocks.

The exit summary for g summarizes: (a) the possible lock(s) in g that can be paired with

the lock (LE(o))/unlock (UE(o)) in f , and (b) the possibility that a lock before calling g can

www.manaraa.com

63

Figure 6.2 Compact function summaries for caller (f) and callee (g)

be paired with a lock/unlock after calling g. Case (b) is possible if there is a THROUGH state in

g. The exit summary for g - denoted by exit summary in Figure 6.2(d) - includes: the exit locks

(L2(o) and L3(o)) and the THROUGH state.

Since the pairing algorithm is traversing the MPGo in a bottom-up manner, the summary

for g is available to compute the summary for f . Figure 6.2(c) shows the entry and exit

summaries for f . Note that: (1) the entry summary for g is part of the entry summary of f

because the entry locks/unlocks in g can be the entry locks/unlocks for f too, and (2) the exit

summary of g is part of the exit summary of f as the exit locks in g can be the exit locks in f .

6.2.4.2 Pairing Algorithm

Listing 6.1 describes the pairing algorithm. It iterates over the set of signatures and takes

as input: the matching pair graph MPGo, the EFG for each function within MPGo. Then, it

outputs: the set of lock/unlock pairs, unpaired locks, and deadlocks (if any).

www.manaraa.com

64

1 main(MPGo)
2 f u n c t i o n s ← r e v e r s e t o p o l o g i c a l s o r t (MPGo) ;
3 f o r (each f u n c t i o n i n f u n c t i o n s)
4 e f g ← get EFG (f u n c t i o n) ;
5 en t r y node ← g e t e n t r y n o d e (e f g) ;
6 e x i t n o d e ← g e t e x i t n o d e (e f g) ;
7 node summary ← { pre sum : {} , post sum : {}} ;
8 traverse efg (en t r y node , node summary) ;
9 summary . entry summary ← pre sum f o r en t r y node ;

10 summary . ex i t summary ← post sum f o r e x i t n o d e ;
11 summaries . put (f un c t i o n , summary) ;
12 i f (f u n c t i o n ∈ r o o t s (MPGo)) AND (summary . ex i t summary c o n t a i n s a l o c k)
13 r e p o r t the l o c k (s) i n summary . ex i t summary as unpa i r ed l o c k (s) ;
14 end
15

16 traverse efg (node , ns)
17 i f node c o n t a i n s a l o c k f u n c t i o n c a l l
18 i f ns . post sum con t a i n s a l o c k
19 r e p o r t a p o t e n t i a l d ead l ock between the c u r r e n t l o c k the l o c k (s) i n ns . post sum .
20 update the pre sum and post sum o f ns w i th the c u r r e n t l o c k .
21 e l s e i f the node i s a c a l l −s i t e f o r f u n c t i o n w i t h i n MPGo
22 sum ← summaries . ge t (c a l l e d f u n c t i o n by node) ;
23 i f (ns . post sum con t a i n s a l o c k) AND (sum . entry summary c o n t a i n s a l o c k)
24 r e p o r t a p o t e n t i a l d ead l ock between the l o c k (s) i n ns . post sum and the l o c k (s) i n

sum . entry summary ;
25 ns . pre sum ← sum . entry summary ;
26 ns . post sum ← sum . ex i t summary ;
27 e l s e i f node i s un lock
28 update the pre sum and post sum o f ns w i th t h i s un lock ;
29

30 i f node i s v i s i t e d b e f o r e AND ns ho l d s the same summary when the node p r e v i o u s l y
v i s i t e d

31 r e t u r n ns . pre sum ;
32

33 pre sum ← {} ;
34 f o r (each s i n s u c c e s s o r s (node))
35 pre sum + = traverse efg (s , ns) ;
36 i f ns . post summary c o n t a i n s a l o c k AND pre summary c o n t a i n s an un lock
37 r e p o r t l o c k / un lock p a i r i n g between the l o c k (s) i n ns . post summary and the un lock (s)

i n pre sum ;
38 update ns . pre sum with pre sum ;
39 r e t u r n ns . pre sum ;
40 end

Listing 6.1 Pairing Algorithm

The pairing algorithm (Listing 6.1) starts by visiting the matching pair graph MPGo in a

bottom-up manner (lines 2-13). For each function in MPGo, the algorithm retrieves the EFG

(line 4), gets the entry/exit nodes (lines 5-6), and passes the entry node and its empty node

summary to the function traverse efg to start the EFG traversal in a depth-first manner (line

8). Upon the return of traverse efg (lines 9-12), the function summary for function is computed

as follows: the entry summary is the same as the entry summary (pre sum) for the EFG entry node

(line 9), and the exit summary is equivalent to the (post sum) of the EFG exit node (line 10). This

function summary is then stored in a global structure (summaries) for later use (line 11). Lines

(12-13) check whether the current function is one of the roots in MPGo and the exit summary

of its summary contains a lock. If so, it reports the lock(s) in exit summary as unpaired locks.

www.manaraa.com

65

Lines (17-20) of function traverse efg check whether the currently visited node (node) con-

tains a lock function call, if that is the case: the algorithm checks if there is a potential deadlock

by checking if the post sum of the previously visited node contains a lock. If so, it reports a

potential deadlock between the lock in ns.post sum and the current lock at node. Finally, it up-

dates the current node summary with the current lock. In lines (21-26), the algorithm checks

if the current node (node) is a call-site for a function within MPGo, then if the entry summary of

the called function contains a lock and the post sum of previously visited node contains a lock

(line 23): the algorithm reports a potential deadlock between the lock(s) in ns.post sum and the

lock(s) in sum.entry summary (line 24). At lines 25-26, the current node summary is updated with

the summary of the called function. In case of the current visited node is an unlock function call

(lines 27-28), then the algorithm updates the current node summary with the current unlock.

In our pairing algorithm, traverse efg can visit an EFG node multiple times if new infor-

mation that affects the locking/unlocking analysis is present. At lines (30-31), the algorithm

checks whether the current node is visited before and it stops traversing through this node, if

the current node summary is the same as the one when previously visited. In other words, if

no new information is presented at this node, then no need to re-visit the node. Otherwise,

the traversal continues to line 33. Lines (33-35) iterate through the successors of the current

node and passes each successor to traverse efg to recursively visit subsequent nodes. Upon the

return of traverse efg, the pre sum is updated with the entry summary for each of its successors.

Once iterating through the successors is completed (lines 36-37), the algorithm checks whether

the post sum of the current node contains a lock and the pre sum of the successors contains an

unlock, if that is the case: the algorithm reports locks/unlocks pairing between the lock(s) in

ns.post sum and the unlock(s) in pre sum of successors. Then at line 38, the algorithm updates

the pre sum of the current node’s with the pre sum of successors. Finally, the updated pre sum for

the current node is returned (line 39).

6.2.5 Step 5: Feasibility Check for Potential-Error Paths

A path on which a lock is not paired with an unlock may or may not be an error depending

on whether the path is feasible or not. This also applies to a path that has a lock paired with

www.manaraa.com

66

another lock. Thus, checking feasibility of such paths is required to avoid false positives. Unlike

existing approaches to static lock/unlock pairing, L-SAP does not encode any information

about path feasibility throughout the lock/unlock pairing algorithm. Instead, it only checks

the feasibility of potential-error paths. These are the paths that have a lock that is : (1) not

paired with any unlocks, or (2) paired with a lock with the same signature (potential deadlock).

L-SAP applies feasibility analysis to EFG paths instead of CFG paths. This is because the EFG

contains fewer paths/conditions than its corresponding CFG. Currently, L-SAP can perform

intra-procedural feasibility analysis as follows:

Let the lock Lp in function A be unpaired lock, and p be the path that has Lp. Then, if

p is an intra-procedural path, L-SAP will check the feasibility of the EFG path p. If p is an

inter-procedural path (i.e., across functions), then L-SAP will only check the feasibility of the

sub-path of p contained within A. We call the intra-procedural EFG path that will be checked

for feasibility, a potential-error path.

To check the feasibility of a potential-error path, L-SAP traverses this path and calculates

a path condition which is the conjunction (AND) (∧) of the branch conditions along that path.

These are the conditions that must be true for the path to be executed. Then, it translates

the path condition to Boolean expressions by assigning a Boolean variable to each condition.

To reveal the branch condition correlations in the Boolean expressions, L-SAP uses textual

equality. For example, let (error∧!error) be a path condition for a problematic path. Then, by

assigning each condition a boolean variable, the corresponding boolean expression will be: c1∧c2

where (c1 = error) and (c2 = !error). Based on the textual equality between error in c1 and

c2, L-SAP can infer the correlation: c2 =!c1. Thus, the resulting boolean expression should be:

c1∧!c1. This final expression’s satisfiability will be tested to determine the problematic path’s

feasibility.

Finally, L-SAP uses BDDs [92] to check the satisfiability of the resultant boolean expres-

sions for each potential-error path to determine its feasibility. In future, we hope to advance

our feasibility analysis to cover inter-procedural potential-error paths and to infer more ac-

curate branch correlations via techniques such as: global value numbering [34] or constant

propagation [90].

www.manaraa.com

67

6.3 Evidence-Enabled Verification Using L-SAP

The L-SAP tool is implemented using Atlas [37] from EnSoft [3]. Atlas is a platform to

develop program comprehension, analysis, and validation tools. Both Atlas platform and L-

SAP are available for download as Eclipse plugins at [4]. Atlas first compiles the given source

code and creates a graph database of relationships between program artifacts. Then, one can

interactively comprehend and/or analyze the source code using Atlas’s interpreter or by writing

Java programs to analyze the source code using Atlas APIs.

L-SAP leverages the Atlas’s query capabilities for lock/unlock mapping (Section 6.2.1) and

generating the matching pair graph (Section 6.2.2). It also uses Atlas APIs to implement: the

algorithm to transform a CFG into an EFG (Section 5.6), the lock/unlock pairing algorithm

(Listing 6.1), and the feasibility analysis (Section 6.2.5). Figure 6.3 shows a screenshot of the

different components of L-SAP and Atlas.

Pre-Analysis Setup. First, the user downloads and imports the Linux kernel version

of interest into Eclipse. Then, Atlas compiles the imported kernel project based on the user-

provided configurations and creates a graph database of relationships between program arti-

facts. This process takes around 2 hours1 for latest kernel version. Then, the user runs L-SAP

on the imported Linux kernel project via the interactive shell (Figure 6.3(g)) by invoking the

script (LSAP.verify()).

L-SAP supports three operational modes: (a) automated verification, (b) interactive veri-

fication, and (c) team verification. L-SAP can be rerun in different operational modes without

having to recreate the graph database.

6.3.1 Automated Verification

The L-SAP tool breaks the lock/unlock pairing verification problem into verification in-

stances where each instance corresponds to a lock call. L-SAP automatically verifies as many

instances as possible with a strong inherent guarantee of correctness. The L-SAP verification

results fall into three categories: (C1) safe instances: the automatically verified instances with

1Based on 2.70 GHz Intel Xeon CPU machine with 128 GB memory, running Ubuntu Linux 14.

www.manaraa.com

68

F
ig

u
re

6.
3

T
h

e
L

-S
A

P
to

ol
an

d
th

e
au

to
m

at
ed

ve
ri

fi
ca

ti
on

of
th

e
se

le
ct

ed
lo

ck
in

fu
n

ct
io

n

h
s
o
f
r
e
e
s
e
r
i
a
l
d
e
v
i
c
e

www.manaraa.com

69

no violation, (C2) unsafe instances: the automatically verified instances with one or more vi-

olations shown by missing unlock(s) on feasible path(s), and (C3) inconclusive instances: the

remaining instances where the verification is inconclusive.

6.3.2 Interactive Verification

The interactive verification mode is primarily to complete the verification of inconclusive

instances. However, it can be handy to cross-check safe and unsafe instances. The interactive

modes are:

1. Verifying Selected Driver. The user selects, from the project’s tree panel (Fig-

ure 6.3(a)), a subset of source files corresponding to one or multiple drivers and invokes L-SAP

to verify the locks in those drivers.

2. Verifying Selected Lock. The user selects a lock from the source code or from a

previously constructed visual model (by clicking on the node corresponding to the lock).

6.3.2.1 Illustration of Interactive Verification

The user selects the marked lock in the source code panel (Figure 6.3(f)) and invokes L-

SAP (LSAP.verify(selected)) through the interactive shell (Figure 6.3(g)). L-SAP verifies the

instance and produces the visual models as the supporting evidence in other panels as shown

in Figures 6.3(b)-(d).

6.3.3 Visual Models for Evidence

L-SAP enables interactive reasoning. The user can interact visually and programmatically

to augment or refine the automatically produced evidence. L-SAP uses the MPG model to assist

with the inter-procedural reasoning by identifying relevant functions and their interactions, and

the EFG model to assist with intra-procedural reasoning for each relevant function.

6.3.3.1 Illustration of Visual Models as the Evidence

Figure 6.3(d) shows the MPG that is used for pairing the selected lock in function hso free serial device

in Figure 6.3(f). Figures 6.3(b) and 6.3(c) show the EFGs for hso free serial device and

www.manaraa.com

70

hso free shared int, respectively. The red, green, and cyan highlighted nodes correspond to

the lock, its paired unlocks and the call-site for function hso free shared int which belongs to

the MPG. It is easy to observe from the EFG for hso free serial device that the lock is followed

by a branch node with two paths: (1) one path leads to a matching unlock (intra-procedural),

and (2) the other path leads to a call to hso free shared int (inter-procedural). The EFG for

hso free shared int shows a matching unlock on all paths. This evidence simplifies the inter-

procedural cross-check to conclude that the automatic verification is correct.

The visual models are especially valuable to understand complex cases. For example, the

CFG for dst ca ioctl in (v3.19-rc1) has 349 nodes and 163 branch nodes. The corresponding

EFG has only 2 nodes and no branch nodes. Thus, the EFG is more effective as evidence

compared to the CFG. If the user has any doubts or wishes to get more details, the user can

query the CFG and compare it with the EFG.

6.3.3.2 Illustration of Visual Interaction

There is a 2-way source correspondence between the displayed visual models and source

code. One can click on a function node in a visual model (e.g., MPG) to open up the EFG

for the selected function. The EFG nodes correspond to statements in the source code. One

can click on an EFG node to observe the corresponding source code. Additionally, there

are Interactive Smart Views (Figure 6.3(e)). For example, when the user clicks on function

hso free shared int in Figure 6.3(d), the reverse call graph smart view (if selected) will instantly

produce the reverse call graph for the selected function as shown in Figure 6.3(e).

6.3.3.3 Illustration of Programmable Interaction

The user can programmatically query and mine the graph database of the imported project

to gather additional evidence via Interactive Shell (Figure 6.3(g)). Figure 6.4 shows the visual

models for the lock in function drxk gate crtl reported as inconclusive instance by L-SAP.

Figures 6.4(a), (b) and (c) show the MPG, EFG, and CFG. The MPG shows that function

drxk gate crtl calls lock and unlock, however, the EFG shows that the lock is not matched by

an unlock. The corresponding CFG shows the lock and unlock are not matched because they

are on disjoint paths: if C = true, the lock occurs, otherwise, the unlock occurs.

www.manaraa.com

71

Figure 6.4 Visual models for drxk gate crtl hint to presence of calls via function pointers

The user hypothesizes that lock and unlock can match if drxk gate crtl is called twice,

first with C = true and then with C = false. Through a quick query, the user observes

that drxk gate crtl is not called directly anywhere. The user hypothesizes that drxk gate crtl

is called using a function pointer. This interactive reasoning for discovering the functions

called via function pointers can be conducted programmatically using the interactive shell

(Figure 6.3(g)) to ask the following questions: What are the functions that: (Q1) set function

pointers to drxk gate crtl?, (Q2) communicate the function pointer?, and (Q3) invoke calls via

the function pointer? This interactive verification led to the discovery of an actual bug.

6.3.4 Team Verification

L-SAP enables collaborative cross-checking. It creates a website (Figure 6.5) with the ver-

ification evidence for each instance. The website enables classroom projects to be conducted

easily. It also enables Linux developers to share specific verification instances with their col-

leagues. A website created by L-SAP can be found at [6]. The website has all the verification

instances and their corresponding evidence for the kernel versions: v3.17-rc1, 3.18-rc1, and

3.19-rc1.

www.manaraa.com

72

Figure 6.5 Website hierarchy

6.4 Empirical Evaluation & Results

In this section, we discuss lock/unlock pairing analysis results obtained by evaluating L-

SAP on three recent versions of the Linux kernel. These three versions together have 37

million lines of complex multi-threaded C code. To evaluate L-SAP, we have considered three

evaluation criteria: (1) competitiveness against the currently top-rated Linux kernel device

driver verification tool (LDV) [5], (2) analysis speed, and (3) pairing accuracy. Finally, we

present examples of verification instances from the three result categories (C1, C2 and C3) to

give a qualitative sense of how the automatically generated evidence simplifies the verification

task. All the verification instances and their accompanied evidence (i.e., MPG, EFG, and CFG)

are publicly available on the website [6]. Our experiments were done on a 2.70 GHz Intel Xeon

CPU machine with 128 GB memory, running Ubuntu Linux 14.

6.4.1 L-SAP: The Lock/Unlock Pairing Analysis Tool

6.4.1.1 Empirical Setup

We used L-SAP to analyze three recent versions (3.17-rc1, 3.18-rc1 and 3.19-rc1) of the

Linux kernel. We enabled all possible x86 build configurations via allmodconfig flag. In Table 6.2,

columns LOC, Functions, Build, Nodes, Edges, and Time show for each kernel version the numbers

for lines of code, functions, build time, nodes and edges in the graph database pre-computed

by Atlas and the time for this pre-computation.

www.manaraa.com

73

Table 6.2 Linux Kernel Artifacts

Kernel LOC Functions Build
Index (Graph Database)

Nodes Edges Time

3.17-rc1 12.3 M 571,012 15m 12s 43.1 M 133.4 M 2h 14m

3.18-rc1 12.3 M 571,498 15m 48s 43.2 M 133.6 M 2h 5m

3.19-rc1 12.4 M 577,650 16m 29s 43.4 M 134.2 M 2h 15m

L-SAP is applied to pair the locks/unlocks for the mutex and spin synchronization mecha-

nisms in the Linux kernel (Table 6.1).

6.4.1.2 Experimental Results

We compare L-SAP against the Linux Driver Verification tool (LDV) [5] which is the current

top-rated tool in the software verification competition (SV-COMP) [18–20] in the Linux device

drivers verification category. The LDV’s developers were generous to provide us with the LDV’s

results on the same versions of the Linux kernel and the same build configurations we have

used.

Table 6.3 shows the comparison of L-SAP and LDV. Column Type identifies the synchro-

nization mechanism. Columns Sigs, Locks and Unlocks show the numbers of signatures and

lock/unlock calls. For instance, in kernel 3.18-rc1, for the spin synchronization, the numbers

for signatures, lock calls, and unlock calls are respectively 2180, 14265, and 16917. Note that a

lock may be paired with multiple unlocks on different execution paths. Columns C1, C2 and C3

show the numbers of lock instances that fall in each of the three results categories C1, C2 and

C3, respectively.

L-SAP is fast and scalable; it generates in 3 hours 66, 609 instances and accurately veri-

fies 66, 151 (99.3%) instances (C1 category). To date no errors have been discovered through

manual cross-checks of automatically verified instances. The remaining 458 instances (C2 and

C3 categories) are verified manually using the automatically generated evidence. We have dis-

covered 8 synchronization bugs that we reported to the Linux community and subsequently

confirmed. Of these, 7 bugs were automatically found and one bug was manually discovered

while analyzing an instance (Section 6.4.2.3) in category C3.

www.manaraa.com

74

T
ab

le
6.

3
C

om
p

ar
is

on
of
L

-S
A

P
an

d
L

D
V

K
er

n
el

T
y
p

e
S

ig
s

L
o
ck

s
U

n
lo

ck
s

L
-S

A
P

L
D

V

C1
C2
C3

A
n

al
y
si

s
T

im
e

C1
C2

C3
A

n
a
ly

si
s

T
im

e

3.
17

-r
c1

s
p
i
n

2,
16

5
1
4,

18
0

16
,8

1
7

14
,0

97
(9

9.
4%

)
1

82
53

m
20

s
8,

96
2

(6
3.

2
%

)
0

5
,2

1
8

2
6h

1
6m

m
u
t
e
x

1,
68

7
7,

88
7

9,
49

7
7,

81
3

(9
9.

1%
)

1
73

14
m

55
s

5,
49

4
(6

9.
7
%

)
0

2
,3

9
3

2
6h

3
1m

3.
18

-r
c1

s
p
i
n

2,
18

0
1
4,

26
5

16
,9

1
7

14
,1

88
(9

9.
5%

)
3

74
53

m
57

s
9,

15
2

(6
4.

2
%

)
0

5
,1

1
3

3
0h

2
2m

m
u
t
e
x

1,
66

4
7,

89
3

9,
55

0
7,

80
1

(9
8.

8%
)

0
92

12
m

59
s

5,
42

7
(6

8.
8
%

)
0

2
,4

6
6

2
9h

4
0m

3.
19

-r
c1

s
p
i
n

2,
20

6
1
4,

39
3

17
,0

2
6

14
,3

14
(9

9.
5%

)
2

77
53

m
25

s
9,

20
4

(6
3.

9
%

)
0

5
,1

8
9

3
1h

5
5m

m
u
t
e
x

1,
70

0
7,

99
1

9,
65

3
7,

93
8

(9
9.

3%
)

0
53

15
m

29
s

5,
52

7
(6

9.
2
%

)
0

2
,4

6
4

2
9h

1
2m

A
ll

K
e
rn

e
ls

1
1
,6

0
2

6
6
,6

0
9

7
9
,4

6
0

6
6
,1

5
1

(9
9
.3

%
)

7
4
5
1

3
h

2
4
m

4
3
,7

6
6

(6
5
.7

%
)

0
2
2
,8

4
3

1
7
2
h

5
6
m

www.manaraa.com

75

In the case of LDV: there are 43, 766 (65.7%) verified instances, however, there is no guar-

antee of correctness. LDV does not report any instances for category C2, i.e. it misses the 7

bugs found by L-SAP. Of the 66, 609 verification instances, LDV gives inconclusive answers for

22, 843 instances. LDV produces voluminous evidence which is also not easy to understand.

Column Analysis Time denotes the total time needed for each analysis. L-SAP takes 53

minutes for spin locks, and (12 to 15) minutes for mutex locks. Overall, L-SAP takes three

hours for completing the analysis of three versions of the Linux kernel while LDV takes 172

hours.

6.4.2 Case Studies & Qualitative Assessment of Visual Models

In this section, we present examples of verification instances from the three result categories

(C1, C2 and C3) to give a qualitative sense of how the automatically generated evidence simplifies

the verification task. The visual models are meant to produce evidence to reduce the burden

on the human analyst. Optimizing the visual models is crucial for reducing the human effort.

All the verification instances and their accompanied evidence (i.e., MPG, EFG, and CFG) are

publicly available on the website [6].

6.4.2.1 An Example from C1 Category

This section presents an example to show the manual effort it would take an analyst to cross-

check an instance that L-SAP verifies automatically and reports no violation. This example

belongs to category C1 which has 99.3% instances. Figure 6.6 shows the visual models for a

lock that L-SAP has reported to be correctly matched. Figure 6.6(a) shows the MPG for the

lock in the function hso free serial device. Figures 6.6(b) and 6.6(c) show the EFGs for the

MPG functions hso free shared int and hso free serial device, respectively.

In this example, it is easy to observe from the EFG of function hso free serial device that the

lock is followed by a branch node with two paths: (1) one path leads to a matching unlock (intra-

procedural), and (2) the other path leads to a call to function hso free shared int (blue-colored

node). The EFG of the called function hso free shared int (Figure 6.6(b)) shows a matching

www.manaraa.com

76

Figure 6.6 Visual models for an automatically verified instance

unlock on all paths within the called function. This evidence simplifies the inter-procedural

cross-check to conclude that the automatic verification is correct.

Bugs Discovery. Below, we present two bug examples. The first example belongs to cat-

egory C2 (7 instances) where L-SAP correctly reports a bug. The second example shows an

inconclusive case from category C3 (451 instances) where the evidence produced combined with

interactive reasoning shows a bug. A listing of the 8 bugs reported in this paper can be found

at [9].

6.4.2.2 A Bug Example from C2 Category

Figure 6.7 shows the visual models for a discovered bug. This bug was discovered automat-

ically by L-SAP and then cross-checked manually. Figure 6.7(a) shows the MPG for the lock

in the function toshsc thread irq. Figure 6.7(b) shows the EFG for toshsc thread irq.

The EFG for toshsc thread irq shows a path on which the lock in not followed by an unlock.

As seen from the EFG, the path is feasible if the boolean expression (C1C2) is true. To complete

www.manaraa.com

77

Figure 6.7 A bug discovery using visual models

the verification, one must verify that the boolean expression is satisfiable and concludes that

the automatically reported violation is indeed a violation. This bug was reported to the Linux

organization and it is fixed.

6.4.2.3 A Bug Example from C3 Category

This example brings out interactive reasoning where the querying capability in Atlas is

crucial. The MPG points to the possibility of functions relevant to the verification, but may be

missing because they may have been called using function pointers. The querying capability is

needed to find these functions.

Figure 6.8 shows the visual models for the lock in function drxk gate crtl reported as un-

paired by L-SAP. Figures 6.8(a), (b) and (c) show the MPG, EFG, and CFG. The MPG shows

that function drxk gate crtl calls lock and unlock, however, the EFG shows that the lock is not

matched by an unlock. The corresponding CFG shows why they are not matched. The lock

and unlock are on disjoint paths: if C = true, the lock occurs, otherwise, the unlock occurs.

www.manaraa.com

78

Figure 6.8 Visual models for drxk gate crtl pointing to presence of calls via function pointers

The lock and unlock on disjoint paths could match if drxk gate crtl is called twice, first

with C = true and then with C = false. This amounts to using drxk gate crtl first as a lock

and then as an unlock. A quick query shows that drxk gate crtl is not called directly anywhere.

Thus, it is either dead code or drxk gate crtl is called using a function pointer. It is apparent

that the evidence in this example is not sufficient, however, it gives the analyst valuable clues

to start with.

As shown in Figure 6.8, function tuner attach tda18271 calls drxk gate crtl via function pointer.

demo attach drxk sets the function pointer to drxk gate crtl, the pointer is communicated by pa-

rameter passing to dvb input attach, then to tuner attach tda18271. Figure 6.9 shows the refined

MPG after it is augmented with these functions newly discovered by human intervention.

This interactive reasoning for discovering the functions called via function pointers can be

conducted visually using Atlas. The queries amount to asking the following questions:

1. What are functions that set function pointers to function drxk gate crtl?

2. What are the functions that communicate the function pointer?

3. What are the functions that invoke calls via the function pointer?

www.manaraa.com

79

Figure 6.9 The augmented MPG for drxk gate crtl after resolving calls via function pointers

We found a bug while working on this instance. Recall that drxk gate crtl must be called

twice; first it acts like a lock and then as an unlock. There is a path on which there is a return

before the second call and thus a bug because the second call for unlocking does not happen

on that return path.

6.4.3 Current Limitations of L-SAP

The results in category C3 correspond to instances where L-SAP gives inconclusive answers

for 451 (< 0.7%) instances. This percentage of reported unpaired locks and deadlocks is

attributed to limitations in L-SAP’s automatic verification. Table 6.4 shows the breakdown for

these 451 verification instances across the following limitation factors:

• Not being able to recognize infeasibility of paths in some cases due to: (a) the use of

textual equality is not advanced enough to find complex intra-procedural correlations

between branch conditions, and (b) the lack of inter-procedural feasibility analysis.

• Inability to process function pointers: L-SAP cannot track the inter-procedural cases in

which a function is called via a function pointer.

www.manaraa.com

80

• The use of signature-based analysis (Section 6.2.1): L-SAP deems two different objects

identical if their signatures match.

Table 6.4 Breakdown of instances in C3 category across different limitation facrtos

Kernel Type C3
Intra-procedural Inter-procedural Function Signature

Feasibility Feasibility Pointers Problems

3.17-rc1
spin 82 14 16 22 30

mutex 73 10 31 28 4

3.18-rc1
spin 74 13 20 23 18

mutex 92 13 35 39 5

3.19-rc1
spin 77 12 16 28 21

mutex 53 6 22 21 4

All Kernels 451 68 140 161 82

The following example from category C3 shows the case where L-SAP reports a violation

that turns out to be a verification flaw due to analysis limitation. In this example, L-SAP

reports a deadlock because a lock is followed by another lock with the same signature (Sec-

tion 6.2.1). L-SAP deems the two objects to be the same because they have identical signatures.

In reality, the two objects are different but L-SAP lacks a refined notion of signature to distin-

guish them.

Figure 6.10 shows the EFG for function ucma lock files. The EFG shows a lock immediately

followed by another lock. It represents either an inadvertent coding error or a mistaken identity

for two locks that are different but have the same signature. Here, the source correspondence

is important to resolve the matter. By clicking on each lock call, one can find that the two

locks operate on different objects. There are 82 instances with this issue.

6.5 Conclusions

L-SAP is a static tool that uses a novel scalable and accurate lock/unlock pairing analysis.

It uses algorithmic innovations based on a study of observed difficulties for lock/unlock pairing

in the Linux kernel. We evaluated L-SAP on three recent versions of the Linux kernel. The

www.manaraa.com

81

Figure 6.10 The EFG for function ucma lock files shows incorrect automatic verification

evaluation results show major accuracy and scalability improvements over the currently top-

rated Linux kernel device driver verification tool (LDV) [5]. The analysis using L-SAP has led

to the discovery of eight synchronization bugs. For each pairing of a lock with corresponding

unlocks with the same signature, L-SAP produces evidence which includes the matching pair

graph (MPG) of the minimum set of functions for inter-procedural analysis and the call chains

between them, the event flow graphs and a compact summary for each of the functions in MPG.

This evidence makes it easy for the human analyst to cross-check the results produced by L-

SAP, or to complete the analysis manually for the cases where L-SAP reports potential-error

paths but cannot provide conclusive results.

www.manaraa.com

82

CHAPTER 7. M-SAP: EVIDENCE-ENABLED LINUX VERIFICATION

FOR ALLOCATION/DEALLOCATION PAIRING ANALYSIS

7.1 Introduction

A memory leak is a situation where an allocated memory by a program is never deallo-

cated subsequently. This common error can have catastrophic effects on long running systems.

With the increasingly larger and more complex software systems, it has become increasingly

challenging to ensure resilience of software systems to memory leaks, especially in the era of

multi-threading and event-processing. These memory leaks can elude dynamic analyses and re-

gression testing because their occurrence often depends on intricate sequences of low-probability

events [41].

Consider the allocation/deallocation pairing analysis: an allocation A is paired with a

deallocation D iff D can deallocate the memory block allocated by A. We use the term allo-

cation/deallocation to refer to an allocation/deallocation operation (i.e., function call). The

existence of unpaired allocations on feasible execution paths results in memory leaks. This

pairing of an allocation with its corresponding deallocations on all feasible execution paths

requires the following: (a) a data flow analysis to map each allocation to corresponding deallo-

cations that reference the same memory block, (b) a control flow analysis to pair each allocation

with corresponding deallocations. This is achieved by identifying all possible intra- and inter-

procedural execution paths that have an allocation ensued by a corresponding deallocation, and

(c) a feasibility analysis to check the feasibility of an execution path on which an allocation is

not ensued by a deallocation. A general-purpose, completely automated, and accurate analysis

is intractable for each of the above three requirements.

www.manaraa.com

83

We present a scalable and accurate static allocation/deallocation pairing analysis that is

explicitly designed to handle the analysis roadblocks we observed in the Linux kernel. We

design a pointer analysis that mines points-to information directly from source code, not from

an intermediate representation of the code (Static Single Assignment (SSA) [56]), to satisfy

the analysis requirement (a) to map each allocation with a set of corresponding deallocations.

To efficiently meet the analysis requirement (b), we use event flow graphs (Chapter 5) to

minimize the set of paths that must be examined for path-sensitive accurate analysis. We also

design compact function summaries for scalable context-sensitive inter-procedural analysis.

For requirement (c), among this minimized set of paths, we separate the paths on which an

allocation is not ensued by a deallocation. By construction, this is a necessary and sufficient

set of paths that should be checked for feasibility. Thus, the need for feasibility analysis is also

minimized by applying it only in the cases where it is needed. A general-purpose, completely

automated, and accurate analysis is intractable for each of the above three requirements.

There is a vast body of work pertaining to static techniques for memory leak detec-

tion [1, 5, 52, 55, 83, 97, 99] in C programs. These state-of-the-art approaches have led to new

advances in data and control flow analyses pushing further the boundaries of scalability and

accuracy. Nevertheless, these approaches have the following drawbacks: (1) the empirical

evaluation of their tools is based on older versions of the Linux kernel (< 4 MLOC) or on

medium-sized programs that are orders of magnitude smaller, (2) the analysis is not exhaus-

tive in a sense that it only produces results for allocation instances where memory leaks are

detected and ignoring other allocations without a verdict (i.e., safe or memory leak), (3) a

skin-deep description about the approach implementation details which makes it challenging

for researchers and practitioners to replicate and incorporate the proposed approach, or re-

produce the reported results, and (4) for each memory leak detected, the analysis produces

very little evidence, voluminous evidence, or evidence that refers to the intermediate repre-

sentation of the verification internals but not to the source code. Such evidence is hard to

decipher; it does not simplify human validation.

Our proposed approach is to specifically mitigate these challenges by: (a) addressing com-

monly occurring roadblocks for scalability and accuracy to arrive at a solution that works well

www.manaraa.com

84

in practice, (b) being exhaustive by providing a verdict for each analyzed allocation instance

accompanied with verification-critical evidence for manual validation, and (c) providing an in-

frastructure that enables researches and practitioners to easily implement an exact replica of

our proposed approach and re-produce our results. The Linux kernel code base has unique

combinations of specific characteristics that attract researchers and practitioners to challenge

their tools [22]. This motivated us to use the Linux kernel code base as a good target system

to test our approach.

We developed M-SAP, a tool that uses our novel allocation/deallocation pairing analysis.

It analyzes each allocation and it produces three categories of results: (C1) an automatically

verified instance with correct allcation/deallocation pairing, (C2) an automatically verified in-

stance with a memory leak i.e. a feasible path with an allocation not ensued by deallocation,

and (C3) an allocation instance where the automated verification is inconclusive. M-SAP pro-

duces for each allocation instance the following evidence: the memory taint graph (MTG) (Sec-

tion 7.2.1.13) to assist with the inter-procedural reasoning by identifying relevant functions and

their interactions, the Event Flow Graph (EFG) (Section7.2.2) to assist with intra-procedural

reasoning for each relevant function, and the Points-to graph (PtG) (Section 4.3) to assist with

data flow reasoning by identifying the points-to relations between the pointers of interest at

different source code locations. We have applied M-SAP to a recent version (3.17-rc1) of the

Linux kernel totalling > 12 MLOC. M-SAP is fast and scalable, and it is able to accurately

pair 92.3% (1, 060) of the total analyzed allocations in one hour with no false negatives. Our

analysis discovered 50 memory leaks that are reported1 to the Linux community. Compared

with the Linux Driver Verification (LDV) tool [5], a state-of-the-art and top-rated verification

framework in the competition on software verification (SV-COMP) [18–20] in the category of

Linux device drivers verification, M-SAP reduces by 9× the number of statically unpaired

allocations and by 30× the analysis time.

To the best of our knowledge, we are the first to perform allocation/deallocation pairing

analysis on a recent version of the Linux kernel. Our evaluation results show thatM-SAP pro-

1Some of the reported memory leaks have been accepted and fixed. Others are still valid in the latest branch
of the Linux kernel.

www.manaraa.com

85

vides a scalable, practical and accurate allocation/deallocation pairing analysis for the Linux

kernel. M-SAP is developed using Atlas [37], which is a platform to develop program compre-

hension, analysis, and validation tools.

This chapter makes the following key contributions:

1. A novel scalable and accurate allocation/deallocation pairing analysis algorithm and its

implementation in the tool M-SAP (Section 7.2.3).

2. An exhaustive pairing analysis that provides for every allocation a verdict accompanied

with evidence for manual validation.

3. An abstract syntax tree (AST) parsing algorithm that mines the points-to information

directly from C source code to build the corresponding PtGs (Section 7.2.1).

4. An evaluation of M-SAP on a recent version of the Linux kernel done automatically in

one hour. The experimental results show that M-SAP correctly pairs 92.3% of the total

analyzed allocations and identifies 50 memory leaks (Section 7.4).

The remainder of the chapter is organized as follows. We first describe our static alloca-

tion/deallocation pairing analysis in Section 7.2. Next, Section 7.3 describes the result cate-

gories and the produced evidence by the M-SAP tool. Section 7.4 presents the experimental

results on a recent version of the Linux kernel. Finally, we conclude in Section 7.5.

7.2 M-SAP Approach

Figure 7.1 shows an overview of our allocation/deallocation pairing analysis. The pairing

analysis has four steps.

In the first step,M-SAP maps each allocation to the set of corresponding deallocations. An

allocation A is mapped with a deallocation D iff D can deallocate the memory block allocated

by A. The mapping is performed via a pointer analysis that tracks the allocated memory

block throughout the program by maintaining PtGs of the allocated memory block (AMB) at

each visited code statement. Due to inter-procedural analysis, this step results on a memory

taint graph (MTGA) for each allocation instance A. The nodes in this graph provide the set

www.manaraa.com

86

Figure 7.1 An Overview of M-SAP Pairing Analysis

of functions for inter-procedural pairing analysis of the allocation A and the corresponding

mapped deallocations. The directed edges in MTGA represent call relationships. In the second

step, for each function in MTGA,M-SAP prunes the CFG to produce a compact CFG named

the Event Flow Graph (EFG). The EFG enables efficient path-sensitive allocation/deallocation

pairing by defining an equivalence relation on the CFG paths such that it is sufficient to examine

only one path from each equivalence class. These first two steps set the stage for an efficient

pairing algorithm.

In the third step, M-SAP iterates over the set of allocation instances to apply the pairing

algorithm to each MTGA and pair the allocation instance A with its corresponding deallo-

cations. For efficiency, the pairing algorithm computes context-sensitive function summaries

using the EFGs computed in the previous step. In the fourth step,M-SAP calculates Boolean

expressions for the conditions governing each potential-error path on which an allocation is not

paired with a deallocation. Then, using BDDs [92], M-SAP examines whether the potential-

error paths are feasible. Next, we describe the four steps in detail.

www.manaraa.com

87

7.2.1 Step 1: Allocation/Deallocation Mapping

An allocation A is mapped to a deallocation D(m) iff D(m) can deallocate the allocated

memory block (AMBA) by A. This can only happen iff m points-to AMBA. To know whether

m points-to AMBA, we present our pointer analysis that traverses the CFG paths from A

reaching D(m) while building and maintaining points-to graphs (Section 4.3) for AMBA. In our

representation, a CFG node corresponds to a single program statement. Our pointer analysis

is: field-sensitive (by distinguishing different fields in a struct), flow-sensitive (by tracking flow

of statements), and object-sensitive (by distinguishing different allocation sites as different

memory blocks (AMBs)).

State-of-the-art approaches to static memory leak detection establish their pointer analyses

based on the points-to information inferred from an intermediate representation of the source

code such as static single assignment (SSA) [56]. Unlike these approaches, our pointer analysis

leverages the points-to information directly from source code by recursively traversing the

abstract syntax tree (AST) node for each analyzed code statement. This results on source code

correspondence for the produced evidence to simplify manual cross-checking and validation.

In the canonical form, a statement in a C program is one of the following: (1) an assignment

of the form, p = &v (address), p = q (copy), p = ∗q (load) or ∗p = q (store), (2) a call statement,

p = Fk(...., q,), at call-site k, where Fk is understood to be a function pointer (or function

in the special case), and (3) a return statement, return p. Here, p and q are local or global

variables and v is a local or global variable, or a heap object. Our pointer analysis considers

a subset of the canonical form as follows: (1) an assignment of the form, p = &v (address) or

p = q (copy), (2) a call statement, p = Fk(...., q,), at call-site k, where Fk is understood to

be a function not a function pointer, and (3) a return statement, return p.

Listing 7.1 describes the allocation/deallocation mapping algorithm. The mapping algo-

rithm takes as input: an allocation node (alloc node), which corresponds to the occurrence of

memory block allocation, and the PtG for the function containing the alloc node and outputs

the corresponding deallocations (if any). The mapping algorithm maintains for each function

a PtG and keeps track of all returned pointers from all return statements of the current visited

www.manaraa.com

88

function in the set returnedPtrs. In addition, the algorithm maintains for each expression E the

set E.ptrs that denotes the pointers that can pointed-to by other pointers if E happens to be

a right expression of a binary expression.

1 Input: An a l l o c n o d e c o r r e s p ond i n g to an a l l o c a t i o n c a l l s i t e and the c u r r e n t PtG f o r the
f u n c t i o n c o n t a i n i n g the a l l o c n o d e

2 Output: the s e t o f d e a l l o c a t i o n c a l l s i t e s c o r r e s p ond i n g to a l l o c n o d e (i f any)
3 visit node(CFG−Node , PtG)
4 v i s i t e d . add (CFG−Node) ;
5 astNode ← getASTNode (CFG−Node) ;
6 e x p r e s s i o n s ← getExpressions(astNode) ;
7 f o r (each e x p r e s s i o n (E) i n e x p r e s s i o n s)
8 process expression(E) ;
9 endfor

10 f o r (each s u c c e s s o r i n s u c c e s s o r s (CFG−Node))
11 i f (s u c c e s s o r /∈ v i s i t e d) OR (new i n f o rma t i o n added to PtG)
12 visit node(s u c c e s s o r , PtG) ;
13 endif
14 endfor
15 end
16

17 process expression(E)
18 i f (E → l a b e l | case | break | cont inue | d e f a u l t s ta tement) /∗ CASE 1 ∗/
19 r e t u r n ;
20 endif
21 i f (E → Id) /∗ CASE 2 ∗/
22 p = getIDP (Id) ;
23 i f (p == n u l l)
24 p = new IDP(Id) ;
25 new po i n t s−to edge : p → new MLoc () ;
26 endif
27 E . p t r s = {p} ;
28 endif
29 i f (E → E1(→ |•)Id) /∗ CASE 3 ∗/
30 ptr name = concat (E1 . p t r s . name , I d . name) ;
31 p = getFRP (ptr name) ;
32 i f (p == n u l l)
33 p = new FRP(ptr name) ;
34 new f i e l d −edge (E1 . p t r s 99K p) ;
35 new po i n t s−to edge : p → new MLoc () ;
36 endif
37 E . p t r s = {p} ;
38 endif
39 i f (E → ~E1}) /∗ CASE 4 ∗/
40 i f (~ i s &)
41 E . r e f e r e n c e = t r u e ;
42 endif
43 E . p t r s = E1 . p t r s ;
44 endif
45 i f (E → E1[E2]) /∗ CASE 5 ∗/
46 E . p t r s = E1 . p t r s
47 endif
48 i f (E → (E1)E2) /∗ CASE 6 ∗/
49 E . p t r s = E2 . p t r s
50 endif
51 i f (E → EL ~ ER) /∗ CASE 7 ∗/
52 i f (~ i s =)
53 f o r (each p t r i n EL . p t r s)
54 remove a l l out po i n t s−to edges ;
55 i f (ER . r e f e r e n c e == t r u e)
56 new po i n t s−to edge : p t r → q : ∀q ∈ ER . p t r s
57 e l s e
58 new po i n t s−to edge : p t r → q : ∀q ∈ pt(ER . p t r s)
59 endif
60 f o r (each q con t a i n ed by p t r)
61 remove a l l out po i n t s−to edges ;
62 M = f i n d the FRP con t a i n ed by ER . p t r s and co r r e s pond s to q
63 i f (ER . r e f e r e n c e == t r u e)
64 new po i n t s−to edge : q → i : ∀i ∈M
65 e l s e
66 new po i n t s−to edge : q → j : ∀j ∈ pt(M)
67 endif
68 endfor
69 endfor
70 endif
71 E . p t r s = EL . p t r s

www.manaraa.com

89

72 endif
73 i f (E → allocationK(E1)) /∗ CASE 8 ∗/
74 p = new MLoc(K) ;
75 E . p t r s = {p} ;
76 i f (E → deallocationM (E1)) /∗ CASE 9 ∗/
77 i f (AMB ∈ pt (E1 . p t r s))
78 map a l l o c a t i o n node (a l l o c n o d e) to d e a l l o c a t i o n node (CFG−Node) ;
79 endif
80 remove out po i n t s−to edges from E1 . p t r s ;
81 new po i n t s−to edge : q → new MLoc () ; : ∀q ∈ E1 . p t r s
82 E . p t r s = {} ;
83 endif
84 i f (E → EF ({Ei})) /∗ CASE 10 ∗/
85 PtGEF

= c l on e (PtG) ;
86 a l t e r n ame s ({Ei} . p t r s , {pi}) ;
87 (PtG , E . p t r s) = visit node(EF , PtGEF

) ;
88 undo a l t e r name s ({Ei} . p t r s , {pi}) ;
89 endif
90 i f (E → return E1 ;) /∗ CASE 11 ∗/
91 E . p t r s = E1 . p t r s , r e t u r n e dP t r s . addA l l (E . p t r s) ;
92 endif
93 end

Listing 7.1 Allocation/Deallocation Mapping Algorithm

Our mapping algorithm (Listing 7.1) starts from the given allocation node (alloc node) and

traverses its containing CFG in a depth-first manner as in function visit node (lines 3-15). In

line 5, the algorithm retrieves the AST subtree corresponding to the code statement denoted

by the CFG node CFG-node. Then in line 6, it retrieves all the expressions by recursively visiting

the AST node. In lines (7-9), the algorithm iterates over the expressions in their parsing

precedence order and passes each expression E to function process expression. After processing

all expressions, the global PtG may be altered by new points-to information. Finally, the

algorithm recursively visits each successor of the current node if the successor is not visited

before or the current global PtG has new information than before processing the expressions

of the current node (lines 10-14).

Function process expression is the core of our mapping algorithm where the updates to the

global PtG occur based on the inferred information from the passed expression E. Next, we

discuss how our mapping algorithm handles each of the 11 cases:

7.2.1.1 CASE 1: Special Statements

Our pointer analysis ignores statements that do not include any points-to information such

as: break, default, goto, continue, and case statements.

www.manaraa.com

90

7.2.1.2 CASE 2: E → Id

For an Id expression, the algorithm queries the PtG for an existing IDP pointer node that

corresponds to the pointer represented by Id, if it does not exist, the algorithm creates a

new IDP pointer node p, creates a new memory location node (new MLoc()) and creates a new

points-to edge from p to the new memory location. Finally, the set of pointers associated with

E consists of p.

7.2.1.3 CASE 3: E → E1(→ |•)Id

Definition 9 Pointer Container. For a given pointer p, the containing pointer Cp points-

to a structure that can directly reference p through a pointer/strcuture de-referencing operation

(→ or •). We use the term pointer container to refer to Cp of pointer p.

For a field reference expression, the algorithm builds the pointer’s name by concatenating

the names of: (1) the pointer node in E1.ptrs which corresponds to the container pointer for

pointer Id, and (2) the IDP Id. Then, the algorithm queries the PtG for an existing FRP

pointer corresponding to the pointer name ptr name, if it does not exist, the algorithm creates

a new FRP pointer node p, adds a new field edge (99K) from the container pointer in E1.ptrs

to p, and creates a new points-to edge from p to a new memory location node. Finally, the set

of pointers associated with E consists of p.

7.2.1.4 CASE 4: E → ~E1}

This case corresponds to a unary expression where ~ and } denote the prefix and suffix

operators. If the prefix operator is a reference operator (~ = &), the algorithm sets the flag

reference to true, so that the algorithm knows that the pointers mined from the expression E1

are referenced. Therefore, any points-to edges should point to the pointer nodes corresponding

to E1.ptrs rather than the pointers that E1.ptrs point to. For other prefix and suffix operators,

the algorithm ignores such pointer arithmetic operations due to the complexity of tracking

memory locations. Finally, the set of pointers associated with E are the same as E1.ptrs.

www.manaraa.com

91

7.2.1.5 CASE 5: E → E1[E2]

Meeting an array expression, our algorithm only parses the name part (E1) of the expression

and drops the subscript expression (E2). Thus, the E.ptrs is the same as E1.ptrs.

7.2.1.6 CASE 6: E → (E1)E2

Meeting a casting expression where E1 is the casting type and E2 is the casted expression:

the algorithm only parses E2 and drops E1. Thus, the E.ptrs is the same as E2.ptrs.

7.2.1.7 CASE 7: E → EL ~ ER

For a binary expression with an operator ~ and a left EL and right ER expressions, our

algorithm works as follows:

• ~ is an assignment operator (=): In this case, the algorithm iterates over each pointer

ptr in the left expression’s pointers (EL.ptrs) and performs the following:

– Remove all the out points-to edges from ptr.

– If the pointers in ER are by-reference (the flag reference is true), then the algorithm

creates a new points-to edge from ptr to every pointer q in ER.ptrs. Otherwise (i.e.,

reference is false), the algorithm creates a new points-to edge from ptr to every

pointer in (pt(ER.ptrs)) which corresponds to the memory locations or pointers

pointed-to by the pointers in ER.ptrs.

– Then, for each pointer q contained by ptr, the algorithm operates as follows:

∗ Remove all the out points-to edges from q.

∗ Find the FRP nodes (M) contained by ER.ptrs and correspond to q. Then,

create a points-to edge from q to every pointer i ∈ M if the reference flag is

set to true, otherwise, create a new points-to edge from q to every pointer or

memory location pointed-to by the pointers in M .

– Finally, the E.ptrs is the same as the EL.ptrs.

www.manaraa.com

92

• For all other operators, the algorithm unsoundly ignores such operators due to the com-

plexity of tracking memory locations. Therefore, the E.ptrs is the same as the EL.ptrs.

7.2.1.8 CASE 8: E → allocationK(E1)

For an allocation callsite at address K, the algorithm creates a new memory location p

associated with the address K and E.ptrs contains p.

7.2.1.9 CASE 9: E → deallocationM (E1)

For a deallocation callsite at address M , the algorithm checks whether the pointers in

E1.ptrs can point-to the allocated memory block (AMB) node by alloc node, then it reports

a mapping between the allocation node alloc node and the current deallocation node. Finally,

it removes all out points-to edges from E1.ptrs and creates a new points-to edge from each

pointer in E1.ptrs to a new memory location.

7.2.1.10 CASE 10: E → EF ({Ei})

In a function call expression: EF denotes the expression for the function name which could

resolve to either an IDP or an FRP (the case of function pointers), and {Ei} is the set of

parameters’ expressions where i is the index of a parameter. The algorithm processes the

function call expression as follows:

• The algorithm clones the current PtG. Then, it alters the pointer names in the cloned

PtG to reflect the mapping between the passed pointers ({Ei}.ptrs) names and the formal

parameter ({pi}) names. Let us illustrate this through the example in Figure 7.2. Fig-

ure 7.2(a) shows the PtG for function L before calling function M . It shows that pointers

A and E->K are passed as the first and second parameters to function M , respectively.

Figure 7.2(b) shows the cloned and altered PtG: all occurrences of pointer A has been

renamed to x, including the pointers where A is a container of other pointers. Similarly,

the pointer node E->k is renamed to y.

www.manaraa.com

93

• The algorithm passes the new cloned PtG with altered names along with the entry node

for the called function EF to function visit node (Listing 7.1) to process EF .

• Once all the CFG nodes in function EF are visited, the algorithm clones the returned PtG

and undo the name alteration occurred in first step. Finally, the E.ptrs corresponds to

the returned pointers from the function call and the algorithm resumes processing other

statements occurring after the EF callsite.

Figure 7.2 Modifying the PtG with respect to the called function formal parameter names

Currently, our mapping algorithm does not process function calls that are represented by

function pointers. Moreover, it does not process library calls and other calls to commonly used

functions for printing/formatting and string manipulation (e.g., memcpy, strcpy, printf, etc).

These functions do not manipulate the passed pointers. Therefore, they are not affecting the

points-to information.

www.manaraa.com

94

7.2.1.11 CASE 11: E → return E1;

For a C return statement, the E.ptrs is the same as the pointers mined from the expression

E1. The mapping algorithm conservatively keeps track of all pointers returned from every return

statement in the set returnedPtrs. Once all the return statements, of the current function M ,

are visited, the algorithm proceeds as follows:

• The algorithm finds the callers of M . Then for each caller function L, the algorithm

randomly picks a node randNode in the L’s CFG that corresponds to a callsite for M .

• The algorithm passes the node randNode along with the PtG for M to function visit node

(Listing 7.1) to start processing through L’s statements. This context switching requires

cloning and name alteration for the passed PtG to match the variable names and formal

parameters in function L.

7.2.1.12 Notes About Pointer Analysis

Like many other state-of-the-art approaches, our pointer analysis treats arrays, array’s

subscripts and double pointers as monotonic objects. In addition, the analysis is not sound in

handling pointer arithmetic and self-updating arithmetic (i.e., pre/post increment/decrement)

by treating, for example, an occurrence of c = a + b as an occurrence of c = a.

Leveraging and parsing source code instead of intermediate representation provides a source

correspondence for the nodes and edges in the PtG to produce comprehensible evidence that

facilitate manual cross-checking and validation.

7.2.1.13 Memory Taint Graph (MTG)

Throughout the allocaion/deallocation mapping algorithm (Listing 7.1), M-SAP keeps

track of all visited functions where the pointers pointing-to the allocated memory block es-

cape directly or indirectly (i.e., through their pointer containers). We denote the induced call

graph of these functions as the memory taint graph (MTGA) (Section 4.2) for the allocated

memory block by the allocation A. The taint graph is associated with only one allocation

www.manaraa.com

95

instance. This graph will be used later to pair an allocation with the corresponding set of

mapped deallocations.

7.2.2 Step 2: Event Flow Graph

In this step, we prune the CFG to form equivalence classes of CFG paths. This is done by

constructing for each CFG the corresponding EFG using the linear-time algorithm as described

in Chapter 5. The initial step in our CFG pruning algorithm is marking the event nodes in

the given CFG that are relevant to allocation/deallocation pairing analysis. Given the memory

taint graph MTGA for the allocation A and the CFG (CFGf) for function f ∈ MTGA, the

events of interest for allocation/deallocation pairing are as follows: (1) the CFG nodes that

correspond to the allocation A (alloc node) and its corresponding deallocation nodes, and (2)

the CFG nodes that correspond to callsites for functions in MTGA. Next, M-SAP takes as

input: the CFG (CFGf) and its marked event nodes and produces the corresponding EFG

(EFGf) using the EFG transformations defined in Section 5.6

7.2.3 Step 3: Allocation/Deallocation Pairing

M-SAP iterates over the allocation instances to apply the pairing algorithm to each MTGA

to pair the allocation A with its corresponding deallocations, that reference the same allocated

memory block. For efficiency, the pairing algorithm computes context-sensitive function sum-

maries using the EFGs computed in the previous step. Note that, if a function appears in two

memory taint graphs with corresponding allocations A1 and A2, then the function would have

two contexts as well as two summaries. M-SAP visits the memory taint graph in a bottom-up

manner while: (1) computing compact function summaries for each visited function, plugging

in the summaries of the callees at call-sites while analyzing the callers, and (2) keeping track

of the allocation/deallocation pairs and unpaired allocations.

7.2.3.1 Compact Function Summaries

For each function, the function summary is computed by traversing its EFG in a depth-first

manner while keeping track of all entry/exit allocations/deallocations on all EFG paths. Let us

www.manaraa.com

96

illustrate our approach to computing compact function summaries. Figures 7.3(a) and (b) show

the EFG for functions f and g. In this example, f calls g at statement: Call g;. The function

summary for g should retain the information relevant for analyzing f . The pairing analysis

is concerned with what follows a given allocation: (i) an allocation followed by deallocation

implies pairing, and (ii) an allocation not followed by deallocation implies an unpaired allocation

(potential memory leak). Recall that we only have one allocation node (callsite) per memory

taint graph.

Figure 7.3 Compact function summaries for caller (f) and callee (g)

The function summary consists of two sub-summaries: entry and exit summaries.

The entry summary for g summarizes: (i) the possible deallocations in g that can be paired

with A, (ii) the entry allocation in g, and (iii) the possibility of not pairing A with deallocation in

g. Case (iii) is possible if there exists a path in g that does not have allocations/deallocations.

www.manaraa.com

97

The entry summary for g - denoted by entry summary in Figure 7.3(d)- includes: the entry

deallocations (D1(o) and D2(o)), and the THROUGH state denoting the existence of paths in g

that do not have any allocations/deallocations.

The exit summary for g summarizes: (a) the possible allocation in g that can be paired

with the deallocation (DE(o)) in f , and (b) the possibility that an allocation before calling g

can be paired with a deallocation after calling g. Case (b) is possible if there is a THROUGH state

in g. The exit summary for g - denoted by exit summary in Figure 7.3(d) - includes: the THROUGH

state.

Since the pairing algorithm is traversing the MTGA in a bottom-up manner, the summary

for g is available to compute the summary for f . Figure 7.3(c) shows the entry and exit

summaries for f . Note that: (1) the entry summary for g is part of the entry summary of f

because the entry allocation and deallocations in g can be the entry allocation and deallocations

for f too, and (2) the exit summary of g is part of the exit summary of f as the exit allocation

in g can be the exit allocation in f .

7.2.3.2 Pairing Algorithm

Listing 7.2 describes the pairing algorithm. It iterates over all allocation instances and takes

as input: an allocation A, the memory taint graph MTGA, the EFG for each function within

MTGA. Then, it outputs: the set of allocation/deallocation pairs and unpaired allocations (if

any).

The pairing algorithm (Listing 7.2) starts by visiting the memory taint graph MTGA in a

bottom-up manner (lines 2-13). For each function in MTGA, the algorithm retrieves the EFG

(line 4), gets the entry/exit nodes (lines 5-6), and passes the entry node and its empty node

summary to the function traverse efg to start the EFG traversal in a depth-first manner (line

8). Upon the return of traverse efg (lines 9-12), the function summary for function is computed

as follows: the entry summary is the same as the entry summary (pre sum) for the EFG entry node

(line 9), and the exit summary is equivalent to the (post sum) of the EFG exit node (line 10). This

function summary is then stored in a global structure (summaries) for later use (line 11). Lines

(12-13) check whether the current function is one of the roots in MTGA and the exit summary

www.manaraa.com

98

of its summary contains the allocation A. If so, it reports the allocation A in exit summary as

unpaired allocation (i.e., potential memory leak).

1 main(MTGA)
2 f u n c t i o n s ← r e v e r s e t o p o l o g i c a l s o r t (MTGA) ;
3 f o r (each f u n c t i o n i n f u n c t i o n s)
4 e f g ← get EFG (f u n c t i o n) ;
5 en t r y node ← g e t e n t r y n o d e (e f g) ;
6 e x i t n o d e ← g e t e x i t n o d e (e f g) ;
7 node summary ← { pre sum : {} , post sum : {}} ;
8 traverse efg (en t r y node , node summary) ;
9 summary . entry summary ← pre sum f o r en t r y node ;

10 summary . ex i t summary ← post sum f o r e x i t n o d e ;
11 summaries . put (f un c t i o n , summary) ;
12 i f (f u n c t i o n ∈ r o o t s (MTGA)) AND (summary . ex i t summary c o n t a i n s a l l o c a t i o n)
13 r e p o r t the a l l o c a t i o n A i n summary . ex i t summary as unpa i r ed a l l o c a t i o n ;
14 end
15

16 traverse efg (node , ns)
17 i f the node i s a c a l l −s i t e f o r f u n c t i o n w i t h i n MTGA
18 sum ← summaries . ge t (c a l l e d f u n c t i o n by node) ;
19 ns . pre sum ← sum . entry summary ;
20 ns . post sum ← sum . ex i t summary ;
21 e l s e i f node i s d e a l l o c a t i o n
22 update the pre sum and post sum o f ns w i th t h i s d e a l l o c a t i o n ;
23

24 i f node i s v i s i t e d b e f o r e AND ns ho l d s the same summary when the node p r e v i o u s l y
v i s i t e d

25 r e t u r n ns . pre sum ;
26

27 pre sum ← {} ;
28 f o r (each s i n s u c c e s s o r s (node))
29 pre sum + = traverse efg (s , ns) ;
30 i f ns . post summary c o n t a i n s a l l o c a t i o n AND pre summary c o n t a i n s d e a l l o c a t i o n
31 r e p o r t a l l o c a t i o n / d e a l l o c a t i o n p a i r i n g between the a l l o c a t i o n i n ns . post summary and

the d e a l l o c a t i o n (s) i n pre sum ;
32 update ns . pre sum with pre sum ;
33 r e t u r n ns . pre sum ;
34 end

Listing 7.2 Pairing Algorithm

Lines (17-20) of function traverse efg check if the current node (node) is a call-site for a

function within MTGA, then, the current node summary is updated with the summary of the

called function. In case of the current visited node is a deallocation function call (lines 21-22),

then the algorithm updates the current node summary with the current deallocation.

In our pairing algorithm, traverse efg can visit an EFG node multiple times if new infor-

mation that affects the allocation/deallocation pairing analysis is present. At lines (24-25), the

algorithm checks whether the current node is visited before and it stops traversing through

this node, if the current node summary is the same as the one when previously visited. In

other words, if no new information is presented at this node, then no need to re-visit the node.

Otherwise, the traversal continues to line 27. Lines (28-29) iterate through the successors of the

current node and passes each successor to traverse efg to recursively visit subsequent nodes.

Upon the return of traverse efg, the pre sum is updated with the entry summary for each of

www.manaraa.com

99

its successors. Once iterating through the successors is completed (lines 30-31), the algorithm

checks whether the post sum of the current node contains an allocation and the pre sum of the

successors contains a deallocation, if that is the case: the algorithm reports allocation/deal-

location pairing between the allocation A in ns.post sum and the deallocations in pre sum of

successors. Then at line 32, the algorithm updates the pre sum of the current node’s with the

pre sum of successors. Finally, the updated pre sum for the current node is returned (line 33).

7.2.4 Step 4: Feasibility Check for Potential-Error Paths

A path on which an allocation is not paired with a deallocation may or may not be an error

depending on whether the path is feasible or not. Thus, checking feasibility of such paths is

required to avoid false positives. Unlike existing approaches to static allocation/deallocation

pairing, M-SAP does not encode any information about path feasibility throughout the allo-

cation/deallocation pairing algorithm. Instead, it only checks the feasibility of potential-error

paths. These are the paths that have an allocation that is not paired with any deallocations.

M-SAP applies feasibility analysis to EFG paths instead of CFG paths. This is because the

EFG contains fewer paths/conditions than its corresponding CFG. Currently, M-SAP can

perform intra-procedural feasibility analysis as follows:

Let the allocation Ap in function L be unpaired allocation, and p be the path that has Ap.

Then, if p is an intra-procedural path,M-SAP will check the feasibility of the EFG path p. If p

is an inter-procedural path (i.e., across functions), then M-SAP will only check the feasibility

of the sub-path of p contained within L. We call the intra-procedural EFG path that will be

checked for feasibility, a potential-error path.

To check the feasibility of a potential-error path,M-SAP traverses this path and calculates

a path condition which is the conjunction (AND) (∧) of the branch conditions along that path.

These are the conditions that must be true for the path to be executed. Then, it translates

the path condition to Boolean expressions by assigning a Boolean variable to each condition.

To reveal the branch condition correlations in the Boolean expressions, M-SAP uses textual

equality. For example, let (error∧!error) be a path condition for a problematic path. Then, by

assigning each condition a boolean variable, the corresponding boolean expression will be: c1∧c2

www.manaraa.com

100

where (c1 = error) and (c2 = !error). Based on the textual equality between error in c1 and c2,

M-SAP can infer the correlation: c2 =!c1. Thus, the resulting boolean expression should be:

c1∧!c1. This final expression’s satisfiability will be tested to determine the problematic path’s

feasibility.

In case of a condition along the potential-error path that tests any of the pointers pointing-

to the allocated memory block for nullness, M-SAP assigns true or false value to the Boolean

variable associated with that condition in the Boolean expression of that path. Consider the

example of the potential-error path q which goes through the true branch of the condition C(ptr

== NULL) after allocating a memory block at ptr = kmalloc(...). In this case, M-SAP assigns

that Boolean variable associated with C a false value in the Boolean expression of q so that q

becomes infeasible when tested for feasibility.

Finally, M-SAP uses BDDs [92] to check the satisfiability of the resultant boolean expres-

sions for each potential-error path to determine its feasibility.

7.3 Enabling Evidence for Human-Machine Collaboration

In this section, we present the evidence produced by M-SAP and the result categories

that will facilitate the human reasoning to comprehend, cross-check, and validate the produced

results.

7.3.1 Creating Verification Instances

The M-SAP tool breaks the verification problem into verification instances. Each verifi-

cation instance corresponds to an allocation call site. M-SAP automatically verifies as many

instances as possible with a strong inherent guarantee of correctness. TheM-SAP verification

results fall into three categories:

• C1: the automatically verified instances with no violation.

• C2: the automatically verified instances with one or more violations shown by missing

deallocation(s) on feasible path(s).

• C3: the remaining instances where the verification is inconclusive.

www.manaraa.com

101

7.3.2 Instance Verification Kit (IVK)

Verification instances are bundled into an IVK. The IVKs are designed as a vehicle to

integrate automation and human intelligence to solve the verification problem. The IVKs are

produced automatically and they provide verification-critical, compact evidence for the human

analyst to reason with. Each IVK includes: (a) the source location of the allocation call, (b)

the source locations of the paired deallocation calls and the points-to graph for each deallocated

pointer, and (d) the visual models MTG, PtG, CFG, and EFG.

7.4 Empirical Evaluation & Results

In this section, we discuss allocation/deallocation pairing analysis results obtained by eval-

uatingM-SAP on a recent version of the Linux kernel of more than 12 million lines of complex

multi-threaded C code. To evaluate M-SAP, we have considered three evaluation criteria: (1)

competitiveness against the current state-of-the-art and top-rated Linux kernel device driver

verification tool (LDV) [5], (2) analysis speed, and (3) pairing accuracy. Finally, we present

examples of verification instances from the three result categories (C1, C2 and C3) to give a

qualitative sense of how the automatically generated evidence simplifies the verification task.

Our experiments were done on a 2.70 GHz Intel Xeon CPU machine with 128 GB memory,

running Ubuntu Linux 14.

7.4.1 Implementation and Experimental Setup

We implemented M-SAP using Atlas from EnSoft [3]. Atlas is a platform to develop

program comprehension, analysis, and validation tools. Both Atlas platform and M-SAP

are Eclipse plugins. Atlas first compiles the given source code and creates a graph database

of relationships between program artifacts. Then, one can interactively comprehend and/or

analyze the source code using Atlas’s interpreter or by writing Java programs to analyze the

source code using Atlas APIs. For more information about Atlas, refer to [37] and EnSoft’s

website [3].

www.manaraa.com

102

M-SAP leverages the Atlas APIs to implement the allocation/deallocation mapping algo-

rithm (Listing 7.1), the algorithm to transform a CFG into an EFG (Section 5.6), the alloca-

tion/deallocation pairing algorithm (Listing 7.2), and the feasibility analysis (Section 7.2.4).

We usedM-SAP to analyze the recent versions (3.17-rc1) of the Linux kernel. We enabled

all possible x86 build configurations via allmodconfig flag. In Table 7.1, columns LOC, Functions,

Build, Nodes, Edges, and Time show the corresponding numbers for lines of code, functions, build

time, nodes and edges in the graph database pre-computed by Atlas and the time for this

pre-computation.

Table 7.1 Linux Kernel (v 3.17-rc1) Artifacts

LOC Functions Build
Index (Graph Database)

Nodes Edges Time

12.3 M 571,012 15m 12s 43.1 M 133.4 M 2h 14m

M-SAP is applied to pair kmalloc allocation function call with kfree deallocation function

call which both widely used in the Linux kernel.

7.4.2 M-SAP: Experimental Results

We compare M-SAP against the Linux Driver Verification tool (LDV) [5] which is the

current top-rated tool in the software verification competition (SV-COMP) [18–20] in the Linux

device drivers verification category. The LDV’s developers were generous to provide us with

the LDV’s results on the same versions of the Linux kernel and the same build configurations

we have used.

Table 7.2 shows the comparison of M-SAP and LDV. Columns kmalloc and kfree show the

numbers for allocation/deallocation callsites. Note that an allocation instance may be paired

with multiple deallocations on different execution paths. Columns C1, C2 and C3 show the

numbers of allocation instances that fall in each of the three results categories C1, C2 and C3,

respectively.

M-SAP can accurately pair 92.3% of the allocations. After manually examining C1 cases

for imprecision assessment, we found thatM-SAP does not produce any false negatives and can

www.manaraa.com

103

kmalloc kfree
M-SAP LDV

C1 C2 C3 Analysis Time C1 C2 C3 Analysis Time

1,149 2,203 1,060 (92.3%) 50 39 1h 21m 357 (31.1%) 0 792 30h 44m

Table 7.2 Allocation/deallocation pairing results on Linux kernel version (3.17-rc1)

precisely pair all the cases in C1 column. The remaining 89 allocations (C2 and C3 categories)

are verified manually. We have discovered 50 cases in C2. These cases amount to actual memory

leaks that have been reported to the Linux community2. The results in category C3 correspond

to instances whereM-SAP gives inconclusive answers. In Section 7.4.4, we discuss the analysis

limitation factors behind these cases.

In the case of LDV: there are 357 (31.1%) automatically paired allocations, however, there

is no guarantee of correctness. LDV does not report any instances in category C2, i.e. it misses

the 50 memory leaks found by M-SAP. Of the 1, 149 allocations, LDV fails to handle 792

allocations: 454 due to false positives and 338 due to scalability (LDV crashes). By contrast,

M-SAP does not have scalability issue, it correctly handles all but (7.7%) of the allocations.

We also checked thatM-SAP subsumes all correct parings done by LDV, and every allocation

unpaired by M-SAP is either unpaired or not handled by LDV. Thus, M-SAP is strictly and

significantly more accurate than LDV.

Column Analysis Time denotes the total time needed for each analysis. M-SAP takes 81

minutes for completing the analysis of while LDV takes 31 hours.

7.4.3 Case Studies & Qualitative Assessment of Visual Models

In this section, we present examples of verification instances from the three result categories

(C1, C2 and C3) to give a qualitative sense of how the automatically generated evidence simplifies

the verification task. The visual models are meant to produce evidence to reduce the burden

on the human analyst. Optimizing the visual models is crucial for reducing the human effort.

2Some of the reported memory leaks have been accepted and fixed. Others are still valid in the latest branch
of the Linux kernel.

www.manaraa.com

104

7.4.3.1 An Example from C1 Category

This section presents an example to show the manual effort it would take an analyst to cross-

check an instance that M-SAP verifies automatically and reports no violation. This example

belongs to category C1 which has 92.3% instances. Figure 7.4 shows the visual models for an

allocation that M-SAP has reported to be correctly matched. Figure 7.4(a) shows the MTG

for the allocation in function lpfcdiag loop get xri. Figure 7.4(b) shows the PtG for pointer

dmabuf after the allocation node and before the condition C2. Figures 7.4(c) and 7.4(d) show

the CFG and EFG for the function lpfcdiag loop get xri, respectively.

Figure 7.4 Visual models for an automatically verified instance

In this example, it is easy to observe from the EFG of function lpfcdiag loop get xri that

the allocation is followed by a branch node with two paths: (1) one path leads to a matching

deallocation, and (2) the other path leads to the terminal node (potential-error path). The

analyst can query the PtG for pointer dmabuf to cross-check whether the dmabuf points-to null

(Figure 7.4(b)). In this example, M-SAP successfully concludes that the potential-error path

is infeasible because it corresponds to the false branch of condition C2 which tests whether

the pointer (dmabuf) that references the allocated memory block points-to null. This evidence

simplifies the cross-check to conclude that the automatic verification is correct. This simplifi-

www.manaraa.com

105

cation is also apparent by the occurred reduction in nodes, edges, and conditions by going from

the CFG to EFG. The CFG for function lpfcdiag loop get xri has 99 nodes, 91 edges, and 10

conditions compared to 6 nodes, 7 edges and 2 conditions in the corresponding EFG.

Bugs Discovery. Below, we present two bug examples. The first example belongs to category

C2 where M-SAP correctly reports a bug. The second example shows an inconclusive case

from category C3 where the evidence produced combined with interactive reasoning shows a

bug.

7.4.3.2 Bug Example 1

Figure 7.5 shows the visual models for a discovered bug. This bug was discovered auto-

matically by M-SAP and then cross-checked manually. Figure 7.5(a) shows the MTG for the

allocation in function acm probe. Figure 7.5(b) shows the PtG for pointer acm->country codes

after the allocation node and before the condition C1. Figures 7.5(c) and 7.5(d) show the CFG

and EFG for the function acm probe, respectively.

The EFG for acm probe shows two paths on which the allocation in not followed by a deal-

location: (1) P1 = C1, and (2) P2 = C1C2C3.

As seen from the EFG, the path P1 is infeasible because the true branch of C1 is taken

only if the pointer acm->country codes points-to null, however, acm->country codes points-to the

allocated memory block as can be seen from the PtG (Figure 7.5(b)) after the allocation node.

For path P2, the path is feasible if the boolean expression C1C2C3 is true. To complete the

verification, one must verify that the boolean expression is satisfiable and concludes that the

automatically reported violation is indeed a violation. This bug was reported to the Linux

organization and it got fixed in a later version.

7.4.3.3 Bug Example 2

This bug belongs to category C3 where the M-SAP tool gives inconclusive answer. Fig-

ure 7.6 shows the visual models for a discovered bug. Figure 7.6(a) shows the MTG for the

www.manaraa.com

106

Figure 7.5 A bug discovery using visual models

allocation in function wil write file wmi. Figures 7.6(b) and 7.6(c) show the CFG and EFG for

the function wil write file wmi, respectively.

The EFG for wil write file wmi shows two paths on which the allocation in not followed by

a deallocation: (1) P1 = C1, and (2) P2 = C1C2. As seen from the EFG, M-SAP success-

fully determines that path P1 is infeasible because the true branch of C1 is taken only if the

pointer wmi points-to null, however, wmi points-to the allocated memory block by the allocation

node. On path P2, the M-SAP inconclusively reports a memory leak due to its inability to

determine the feasibility of P2. For path P2, the path is feasible if the boolean expression

C1C2 is true. To complete the verification, one must verify that the boolean expression is

satisfiable. The analyst checks the CFG for function wil write file wmi and sees that C2 is

dependent on the value returned from the function call simple write to buffer. Investigating

www.manaraa.com

107

Figure 7.6 A bug discovery using visual models

through simple write to buffer, the human analyst is able to conclude that path P2 is feasible

and this inconclusive allocation instance results on a memory leak. This bug was reported to

the Linux organization and it got fixed in a later version.

7.4.4 Current Limitations of M-SAP

The results in category C3 correspond to instances where M-SAP gives inconclusive an-

swers for 39 (3%) instances. This percentage of reported unpaired allocations is attributed to

limitations in M-SAP’s automatic verification due to the following limitation factors:

• 26 Instances: Not being able to recognize infeasibility of paths in some cases due to: (a)

the use of textual equality is not advanced enough to find complex correlations between

branch conditions, and (b) the lack of inter-procedural feasibility analysis.

• 13 Instances: Not being able to handle complex syntax including arrays, array’s sub-

scripts and double pointers. In addition to unsound handling of pointer arithmetic by

treating, for example, an occurrence of x + e as an occurrence of x.

www.manaraa.com

108

The following example from category C3 shows the case where M-SAP reports a violation

that turns out to be a verification flaw due to analysis limitation. In this example, M-SAP

reports a memory leak because the allocation is not followed by a deallocation on some path.

In this example, M-SAP is not able to decide on the feasibility of the potential-error path. In

reality, the potential-error path is infeasible but L-SAP lacks the required capability to test

this case for feasibility.

Figure 7.7 shows the EFG for function rndis query oid. The EFG shows two paths where

the allocation is not followed by deallocation: (1) P1 = C1 and (2) P2 = C1C2. As seen

from the EFG, the path P1 is infeasible because the true branch of C1 is taken only if the

pointer u.buf points-to null, however, u.buf points-to the allocated memory block as can be

seen from the PtG (Figure 7.7(b)) after the allocation node. For path P2, the path is feasible

if the boolean expression C1C2 is true. To complete the verification, one must verify that the

boolean expression is satisfiable. In reality, this path P2 is infeasible.

Figure 7.7 An Example from C3 category

www.manaraa.com

109

7.4.5 Off Limits Allocation Instances

In the Linux kernel (v3.17-rc1), there are 1, 814 kmalloc function calls (allocation instances)

more than what is reported in Table 7.2. These allocation instances correspond to the cases

which are out of the scope of our proposed pairing analysis. M-SAP is not intended to handle

these cases as it lacks the following capabilities:

• 725 Instances: Inability to process function pointers. M-SAP cannot track the inter-

procedural cases in which a reference to the allocated memory block is passed as a pa-

rameter to a function called via a function pointer.

• 1,366 Instances: Inability to perform backward pointer (data flow) tracking.

• 650 Instances: Inability to process escapes through global structures and lists.

• 392 Instances: The current analysis is not offset-sensitive. In the Linux kernel, there

are cases where a field of a structure can be accessed indirectly by adding/subtracting an

offset from another field within the same structure.

7.5 Conclusions

M-SAP is a static tool that uses a novel scalable and accurate allocation/deallocation

pairing analysis. It uses algorithmic innovations based on a study of observed difficulties for

allocation/deallocation pairing in the Linux kernel. M-SAP applies a pointer analysis, that

leverages the points-to information directly from source code (not an intermediate representa-

tion of source code). The analysis is field-sensitive (by distinguishing different fields in a struct),

flow-sensitive (by tracking flow of statements), and object-sensitive (by distinguishing different

allocation sites as different memory blocks). We evaluated M-SAP on a recent version of the

Linux kernel. The evaluation results show major accuracy and scalability improvements over

the currently top-rated Linux kernel device driver verification tool (LDV) [5]. M-SAP is able to

accurately pair 92.3% of the total analyzed allocations with their corresponding deallocations

in one hour with no false negatives. The analysis using M-SAP has led to the discovery of

50 memory leaks. For each pairing of an allocation with corresponding deallocations, M-SAP

www.manaraa.com

110

produces evidence which includes the memory taint graph (MTG) of the set of functions for

inter-procedural analysis and the call chains between them, the event flow graphs and a com-

pact summary for each of the functions in MTG, and the PtG to assist with data flow analysis.

This evidence makes it easy for the human analyst to cross-check the results produced by M-

SAP, or to complete the analysis manually for the cases whereM-SAP reports potential-error

paths but cannot provide conclusive results.

www.manaraa.com

111

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

This thesis presents a new approach to solve hard software verification problems of large

software. These problems that have remained intractable despite the many attempts to solve

them completely automatically. The new approach is not about pushing the boundaries of

complete automation. It is about fusing automation and human reasoning to solve hard software

verification problems. Verification-critical and compact evidence to empower human reasoning

as well as efficient automation is the key element of this new approach called Evidence-Enabled

Verification (EEV).

This thesis presents EEV with two challenging applications: (1) EEV for Lock/Unlock Pair-

ing and its implementation in L-SAP tool to verify the correct pairing of mutex lock and spin

lock with their corresponding unlocks on all feasible execution paths, and (2) EEV for Alloca-

tion/Deallocation Pairing and its implementation in M-SAP tool to verify the correct pairing

of memory allocation with its corresponding deallocations on all feasible execution paths. The

tools incorporate algorithmic innovations to advance the state of the art for scalable and accu-

rate verification. The tools partitions the verification problem into verification instances. Each

verification instance corresponds to a lock call site in case of L-SAP and an allocation site

in case of M-SAP. Both tools produce three categories of results: (C1) automatically verified

instances with correct pairings, (C2) automatically verified instances with violations, and (C3)

instances where the automated verification is inconclusive. Each instance is accompanied with

visual verification-critical evidence to simplify cross-checking for verification instances in C1

and C2 and to complete verification for verification instances in C3.

We applied the L-SAP tool to verify three recent versions of the Linux kernel with altogether

66, 609 verification instances. L-SAP is fast and scalable, and it is able to accurately pair 99.3%

of the total locks in 3 hours. Our analysis discovered 8 synchronization bugs that were reported

www.manaraa.com

112

to the Linux community and accepted by them. Compared with the LDV tool [5], L-SAP

reduces by 49× the number of statically unpaired locks and by 59× the analysis time. We

applied the M-SAP tool to verify a recent version of the Linux kernel with 2, 963 verification

instances. M-SAP is fast and scalable, and it is able to accurately pair 92.3% of the total

analyzed allocations in one hour with no false negatives. Our analysis discovered 50 memory

leaks that are reported to the Linux community. Compared with the LDV tool [5], M-SAP

reduces by 9× the number of statically unpaired allocations and by 30× the analysis time.

We believe that the extreme accuracy and scalability of EEV stem from the visual models

that leverage the intrinsic regularity developers build into large software to make its complexity

manageable for them. Developers may not document their good design, but it is intrinsically

there to extract using mathematically rigorous abstractions and use them to make software

verification a practical reality for large software. This is a research direction worth pursu-

ing. Another worth exploring direction is how to harness the evidence generated using such

abstractions for targeted testing.

www.manaraa.com

113

BIBLIOGRAPHY

[1] Clang static analyzer. http://clang-analyzer.llvm.org/.

[2] Coverity static analysis. http://www.coverity.com.

[3] Ensoft corp. http://www.ensoftcorp.com.

[4] L-sap: Scalable and accurate lock/unlock pairing analysis for the linux kernel. http:

//home.engineering.iastate.edu/~atamrawi/l-sap.

[5] Linux driver verification (LDV) tool. http://linuxtesting.org/project/ldv.

[6] Linux results. http://kcsl.ece.iastate.edu/linux-results/.

[7] The llvm compiler. http://llvm.org/.

[8] Open64 compiler. http://www.open64.net/.

[9] Reported bugs by L-SAP. http://home.engineering.iastate.edu/~atamrawi/

l-sap/bugs.html.

[10] Space/Time Analysis for Cybersecurity (STAC). https://www.fbo.gov/spg/ODA/

DARPA/CMO/DARPA-BAA-14-60/listing.html.

[11] Timesort. https://en.wikipedia.org/wiki/Timsort.

[12] XINU. http://en.wikipedia.org/wiki/XNU.

[13] S. B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516, 1978.

[14] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM,

1970.

http://clang-analyzer.llvm.org/
http://www.coverity.com
http://www.ensoftcorp.com
http://home.engineering.iastate.edu/~atamrawi/l-sap
http://home.engineering.iastate.edu/~atamrawi/l-sap
http://linuxtesting.org/project/ldv
http://kcsl.ece.iastate.edu/linux-results/
http://llvm.org/
http://www.open64.net/
http://home.engineering.iastate.edu/~atamrawi/l-sap/bugs.html
http://home.engineering.iastate.edu/~atamrawi/l-sap/bugs.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
https://en.wikipedia.org/wiki/Timsort
http://en.wikipedia.org/wiki/XNU

www.manaraa.com

114

[15] L. O. Andersen. Program analysis and specialization for the C programming language.

PhD thesis, University of Cophenhagen, 1994.

[16] T. Ball and S. K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine.

pages 97–103. ACM, 2001.

[17] T. Ball and S. K. Rajamani. The s lam project: debugging system software via static

analysis. In ACM SIGPLAN Notices, volume 37, pages 1–3. ACM, 2002.

[18] D. Beyer. Competition on software verification. In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 504–524. Springer, 2012.

[19] D. Beyer. Second competition on software verification. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 594–609. Springer, 2013.

[20] D. Beyer. Status report on software verification. In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 373–388. Springer, 2014.

[21] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker

blast. International Journal on Software Tools for Technology Transfer, 9(5-6):505–525,

2007.

[22] D. Beyer and A. K. Petrenko. Linux driver verification. In Leveraging Applications of

Formal Methods, Verification and Validation. Applications and Case Studies, pages 1–6.

Springer, 2012.

[23] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow information using infeasible

paths. In Software EngineeringESEC/FSE’97, pages 361–377. Springer, 1997.

[24] D. Bruening and Q. Zhao. Practical memory checking with dr. memory. In Proceed-

ings of the 9th Annual IEEE/ACM International Symposium on Code Generation and

Optimization, pages 213–223. IEEE Computer Society, 2011.

[25] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Networks,

48(5):701–716, 2005.

www.manaraa.com

115

[26] C. Canal and A. Idani. Software Engineering and Formal Methods: SEFM 2014 Collocated

Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS, Grenoble, France,

September 1-2, 2014, Revised Selected Papers, volume 8938. Springer, 2015.

[27] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data

races in Cilk programs that use locks. In Proceedings of the tenth annual ACM symposium

on Parallel algorithms and architectures, pages 298–309. ACM, 1998.

[28] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak detection using

guarded value-flow analysis. In ACM SIGPLAN Notices, volume 42, pages 480–491.

ACM, 2007.

[29] H. K. Cho, T. Kelly, Y. Wang, S. Lafortune, H. Liao, and S. Mahlke. Practical lock/unlock

pairing for concurrent programs. In Code Generation and Optimization (CGO), 2013.

[30] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse data flow

evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 55–66. ACM, 1991.

[31] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient

and precise datarace detection for multithreaded object-oriented programs. In ACM

SIGPLAN Notices, volume 37, pages 258–269. ACM, 2002.

[32] A. Church. A note on the entscheidungsproblem. J. Symb. Log., 1(1):40–41, 1936.

[33] J. Clause and A. Orso. Leakpoint: pinpointing the causes of memory leaks. In Proceedings

of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1,

pages 515–524. ACM, 2010.

[34] C. Click. Global code motion/global value numbering. In ACM SIGPLAN Notices,

volume 30, pages 246–257. ACM, 1995.

[35] M. Das. Unification-based pointer analysis with directional assignments. Acm Sigplan

Notices, 35(5):35–46, 2000.

www.manaraa.com

116

[36] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verification in polynomial

time. In ACM SIGPLAN Notices, volume 37, pages 57–68. ACM, 2002.

[37] T. Deering, S. Kothari, J. Sauceda, and J. Mathews. Atlas: a new way to explore software,

build analysis tools. In Companion Proceedings of the 36th International Conference on

Software Engineering, pages 588–591. ACM, 2014.

[38] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. 1998.

[39] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-sensitive analysis.

In ACM SIGPLAN Notices, volume 43, pages 270–280. ACM, 2008.

[40] A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms for

access anomaly detection, volume 25. ACM, 1990.

[41] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions and

deadlocks. In ACM SIGOPS Operating Systems Review, volume 37, pages 237–252.

ACM, 2003.

[42] A. Futoransky, D. Saura, and A. Waissbein. Timing attacks for recovering private entries

from database engines.

[43] A. Galloway, G. Lüttgen, J. T. Mühlberg, and R. I. Siminiceanu. Model-checking the

linux virtual file system. In Verification, Model Checking, and Abstract Interpretation,

pages 74–88. Springer, 2009.

[44] B. Gates. Bill Gates Keynote: Microsoft Tech-Ed 2008, 2008.

[45] J. Gleick and R. C. Hilborn. Chaos, making a new science. American Journal of Physics,

56(11):1053–1054, 1988.

[46] P. Godefroid and S. K. Lahiri. From program to logic: An introduction. In Tools for

Practical Software Verification, pages 31–44. Springer, 2012.

www.manaraa.com

117

[47] K. Gui and S. Kothari. A 2-phase method for validation of matching pair property with

case studies of operating systems. In Software Reliability Engineering (ISSRE), 2010

IEEE 21st International Symposium on, pages 151–160. IEEE, 2010.

[48] A. Gupta, C. Popeea, and A. Rybalchenko. Threader: A constraint-based verifier for

multi-threaded programs. In Computer Aided Verification, pages 412–417. Springer, 2011.

[49] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M. Chen,

and J. Flinn. Race detection for event-driven mobile applications. In ACM SIGPLAN

Notices, volume 49, pages 326–336. ACM, 2014.

[50] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive race detection with

control flow abstraction. ACM SIGPLAN Notices, 49(6):337–348, 2014.

[51] K. Jayaram and P. Eugster. Program analysis for event-based distributed systems. In

Proceedings of the 5th ACM international conference on Distributed event-based system,

pages 113–124. ACM, 2011.

[52] Y. Jung and K. Yi. Practical memory leak detector based on parameterized procedural

summaries. In Proceedings of the 7th international symposium on Memory management,

pages 131–140. ACM, 2008.

[53] A. Khoroshilov, V. Mutilin, E. Novikov, P. Shved, and A. Strakh. Towards an open

framework for c verification tools benchmarking. In Perspectives of Systems Informatics,

pages 179–192. Springer, 2012.

[54] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov. Establishing linux driver

verification process. In Perspectives of Systems Informatics, pages 165–176. Springer,

2010.

[55] W. Le and M. L. Soffa. Generating analyses for detecting faults in path segments. In

Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages

320–330. ACM, 2011.

[56] P. Lee, F. Pfenning, and A. Platzer. Static single assignment.

www.manaraa.com

118

[57] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/java user’s manual. ESC, 2000:002,

2000.

[58] O. Lhoták. Program analysis using binary decision diagrams. PhD thesis, McGill Uni-

versity, 2006.

[59] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,

20(2):130–141, 1963.

[60] R. Manevich, G. Ramalingam, J. Field, D. Goyal, and M. Sagiv. Compactly representing

first-order structures for static analysis. In Static Analysis, Lecture Notes in Computer

Science. 2002.

[61] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective sampling for

lightweight data-race detection. In ACM Sigplan Notices, volume 44, pages 134–143.

ACM, 2009.

[62] J. Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-join

parallelism. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages

24–33. ACM, 1991.

[63] J. T. Mühlberg and G. Lüttgen. Blasting linux code. Springer, 2007.

[64] A. Navabi, N. Kidd, and S. Jagannathan. Path-sensitive analysis using edge strings. 2010.

[65] S. Neginhal and S. Kothari. Event views and graph reductions for understanding system

level c code. In ICSM, 2006.

[66] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary

instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

[67] M. N. Ngo and H. B. K. Tan. Detecting large number of infeasible paths through rec-

ognizing their patterns. In Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, pages 215–224. ACM, 2007.

www.manaraa.com

119

[68] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The yogi project: Software

property checking via static analysis and testing. In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 178–181. Springer, 2009.

[69] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely locating memory leaks

and bloat. In ACM Sigplan Notices, volume 44, pages 397–407. ACM, 2009.

[70] W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens. Sound formal

verification of linuxs usb bp keyboard driver. In NASA Formal Methods, pages 210–215.

Springer, 2012.

[71] D. Perkovic and P. J. Keleher. Online data-race detection via coherency guarantees. In

OSDI, volume 96, pages 47–57, 1996.

[72] H. Post, C. Sinz, and W. Küchlin. Towards automatic software model checking of thou-

sands of linux modulesa case study with avinux. Software Testing, Verification and

Reliability, 19(2):155–172, 2009.

[73] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive correlation analysis

for race detection. ACM SIGPLAN Notices, 41(6):320–331, 2006.

[74] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Practical static race detection for c.

ACM Transactions on Programming Languages and Systems (TOPLAS), 33(1):3, 2011.

[75] M. Prvulovic and J. Torrellas. Reenact: Using thread-level speculation mechanisms to

debug data races in multithreaded codes. In Computer Architecture, 2003. Proceedings.

30th Annual International Symposium on, pages 110–121. IEEE, 2003.

[76] G. Ramalingam. On sparse evaluation representations. Springer, 1997.

[77] M. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference of function

precedence protocols. In ICSE, 2007.

[78] S. P. Reiss. Event-based performance analysis. In Program Comprehension, 2003. 11th

IEEE International Workshop on, pages 74–83. IEEE, 2003.

www.manaraa.com

120

[79] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transac-

tions of the American Mathematical Society, 74(2):358–366, 1953.

[80] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic

data race detector for multithreaded programs. ACM Transactions on Computer Systems

(TOCS), 15(4):391–411, 1997.

[81] N. Sterling. Warlock-a static data race analysis tool. In USENIx Winter, pages 97–106,

1993.

[82] P. Stratis. Formal verification in large-scaled software: Worth to ponder, 2014.

[83] Y. Sui, D. Ye, and J. Xue. Detecting memory leaks statically with full-sparse value-flow

analysis. Software Engineering, IEEE Transactions on, 40(2):107–122, 2014.

[84] Y. Sui, S. Ye, J. Xue, and P.-C. Yew. Spas: scalable path-sensitive pointer analysis on

full-sparse ssa. In Programming Languages and Systems, pages 155–171. Springer, 2011.

[85] A. S. Tanenbaum and H. Bos. Modern operating systems. Prentice Hall Press, 2014.

[86] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,

1(2):146–160, 1972.

[87] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem.

J. of Math, 58(345-363):5, 1936.

[88] V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. In Annales Univ.

Sci. Budapest., Sect. Comp, volume 30, pages 141–155, 2009.

[89] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on millions of lines

of code. In Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software engineer-

ing, pages 205–214. ACM, 2007.

[90] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM

Transactions on Programming Languages and Systems (TOPLAS), 13(2):181–210, 1991.

www.manaraa.com

121

[91] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying loops in decom-

pilation. In Static Analysis, pages 170–183. Springer, 2007.

[92] J. Whaley. Javabdd-java binary decision diagram library, 2010.

[93] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation. ACM.

[94] T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model checking concur-

rent linux device drivers. In Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, pages 501–504. ACM, 2007.

[95] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice

and experience. ACM Computing Surveys (CSUR), 41(4):19, 2009.

[96] X. Xie, J. Xue, and J. Zhang. Acculock: Accurate and efficient detection of data races.

Software: Practice and Experience, 43(5):543–576, 2013.

[97] Y. Xie and A. Aiken. Context-and path-sensitive memory leak detection. ACM SIGSOFT

Software Engineering Notes, 30(5):115–125, 2005.

[98] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Transactions on Programming Languages and Systems (TOPLAS),

29(3):16, 2007.

[99] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Trans. Program. Lang. Syst., 29(3), May 2007.

[100] G. Xu, M. D. Bond, F. Qin, and A. Rountev. Leakchaser: helping programmers narrow

down causes of memory leaks. ACM SIGPLAN Notices, 46(6):270–282, 2011.

[101] G. Xu and A. Rountev. Precise memory leak detection for java software using con-

tainer profiling. ACM Transactions on Software Engineering and Methodology (TOSEM),

22(3):17, 2013.

www.manaraa.com

122

[102] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward computation of dynamic slices

using reduced ordered binary decision diagrams. In ICSE, 2004.

	2016
	Evidence-enabled verification for the Linux kernel
	Ahmed Yousef Tamrawi
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 State-Of-The-Art Formal Verification Techniques
	1.2 A Different Approach to Software Verification
	1.3 Thesis Contribution
	1.4 Thesis Organization

	2. MAJOR CHALLENGES AND MOTIVATION
	2.1 Challenges Overview
	2.2 Path Explosion
	2.3 Inter-procedural Analysis
	2.4 Feasibility Analysis
	2.5 Pointer Analysis
	2.6 A Concrete Example to Illustrate the Need for Verification-Critical Evidence

	3. LITERATURE REVIEW
	3.1 Data Races and Deadlocks Detection
	3.2 Static Memory Leak Detection
	3.3 Evidence-Enabled Verification
	3.4 Linux Kernel Verification

	4. VISUAL MODELS AS VERIFICATION-CRITICAL EVIDENCE
	4.1 Matching Pair Graph (MPG)
	4.2 Memory Taint Graph (MTG)
	4.3 Points-To Graph (PtG)
	4.4 Event Flow Graph (EFG)
	4.5 Enabling Technology & Interactive Reasoning

	5. EVENT FLOW GRAPH FOR PROGRAM COMPREHENSION
	5.1 Introduction
	5.2 Motivation
	5.2.1 A Linux Example
	5.2.2 Loop Call Graph

	5.3 Application: Verify Pairing
	5.3.1 Correct Lock-Unlock Pairing
	5.3.2 Lock-Unlock Pairing Bug
	5.3.3 Pairing Includes Loop
	5.3.4 An EFG Quirk
	5.3.5 Comprehension-Driven Verification

	5.4 Application: Find Vulnerability
	5.5 EFG Tool Support
	5.5.1 Programmed EFG Construction
	5.5.2 Interactive EFG Construction
	5.5.3 Gradual EFG Expansion

	5.6 Event Flow Graph
	5.6.1 Step 1: Marking Event Nodes
	5.6.2 Step 2: T-Irreducible Graph
	5.6.3 Step 3: Non-Event Condensation Graph
	5.6.4 Step 4: Event Condensation Graph
	5.6.5 Step 5: Condensed EFG
	5.6.6 Step 6: Final EFG
	5.6.7 Algorithm Complexity
	5.6.8 Observations
	5.6.9 EFG Minimality

	5.7 An Assessment of EFGs
	5.7.1 An Empirical Study
	5.7.2 Quantitative Assessment of EFGs

	5.8 Related Work
	5.9 Conclusion

	6. L-SAP: EVIDENCE-ENABLED LINUX VERIFICATION FOR LOCK/UNLOCK PAIRING ANALYSIS
	6.1 Introduction
	6.2 L-SAP Approach
	6.2.1 Step 1: Lock/Unlock Mapping
	6.2.2 Step 2: Matching Pair Graph
	6.2.3 Step 3: Event Flow Graph
	6.2.4 Step 4: Pairing Algorithm
	6.2.5 Step 5: Feasibility Check for Potential-Error Paths

	6.3 Evidence-Enabled Verification Using L-SAP
	6.3.1 Automated Verification
	6.3.2 Interactive Verification
	6.3.3 Visual Models for Evidence
	6.3.4 Team Verification

	6.4 Empirical Evaluation & Results
	6.4.1 L-SAP: The Lock/Unlock Pairing Analysis Tool
	6.4.2 Case Studies & Qualitative Assessment of Visual Models
	6.4.3 Current Limitations of L-SAP

	6.5 Conclusions

	7. M-SAP: EVIDENCE-ENABLED LINUX VERIFICATION FOR ALLOCATION/DEALLOCATION PAIRING ANALYSIS
	7.1 Introduction
	7.2 M-SAP Approach
	7.2.1 Step 1: Allocation/Deallocation Mapping
	7.2.2 Step 2: Event Flow Graph
	7.2.3 Step 3: Allocation/Deallocation Pairing
	7.2.4 Step 4: Feasibility Check for Potential-Error Paths

	7.3 Enabling Evidence for Human-Machine Collaboration
	7.3.1 Creating Verification Instances
	7.3.2 Instance Verification Kit (IVK)

	7.4 Empirical Evaluation & Results
	7.4.1 Implementation and Experimental Setup
	7.4.2 M-SAP: Experimental Results
	7.4.3 Case Studies & Qualitative Assessment of Visual Models
	7.4.4 Current Limitations of M-SAP
	7.4.5 Off Limits Allocation Instances

	7.5 Conclusions

	8. CONCLUSIONS AND FUTURE DIRECTIONS
	BIBLIOGRAPHY

